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Abstract. We consider weak solutions of the instationary Navier-Stokes
system in a smooth bounded domain Ω ⊂ R3 with initial value u0 ∈
L2
σ(Ω). It is known that a weak solution is a local strong solution in

the sense of Serrin if u0 satisfies the optimal initial value condition u0 ∈
B
−1+3/q
q,sq with Serrin exponents sq > 2, q > 3 such that 2

sq
+ 3

q
= 1.

This result has recently been generalized by the authors to weighted

Serrin conditions such that u is contained in the weighted Serrin class∫ T
0 (τα‖u(τ)‖q)s dτ < ∞ with 2

s
+ 3

q
= 1 − 2α, 0 < α < 1

2
. This reg-

ularity is guaranteed if and only if u0 is contained in the Besov space

B
−1+3/q
q,s . In this article we consider the limit case of initial values in

the Besov space B
−1+3/q
q,∞ and in its subspace

◦
B
−1+3/q
q,∞ based on the con-

tinuous interpolation functor. Special emphasis is put on questions of

uniqueness within the class of weak solutions.

1. Introduction

We consider the Navier-Stokes initial value problem

∂tu−∆u+ u · ∇u+∇p = f, div u = 0 in (0, T )× Ω(1.1)

u|∂Ω = 0, u(0) = u0

in a bounded domain Ω ⊂ R3 with boundary ∂Ω of class C2,1 and a time interval
[0, T ), 0 < T ≤ ∞. For simplicity, the coefficient of viscosity is assumed to be
equal to 1.

Let us recall the definition of weak and strong solutions to (1.1) and define
special types of strong solutions contained in spaces with weights in time, so-
called strong Lsα(Lq)-solutions.

Received August 10, 2016; Revised November 9, 2016; Accepted November 28, 2016.
2010 Mathematics Subject Classification. 35A02, 35Q30, 76D03, 76D05.
Key words and phrases. instationary Navier-Stokes system, initial values, local strong

solutions, weighted Serrin condition, limiting type of Besov space, restricted Serrin’s unique-
nesss theorem.

c©2017 Korean Mathematical Society

1483



1484 R. FARWIG, Y. GIGA, AND P.-Y. HSU

Definition 1.1. Let u0 ∈ L2
σ(Ω) be an initial value and let f = divF with

F = (Fij)
3
i,j=1 ∈ L2(0, T ;L2(Ω)) be an external force.

(i) A vector field u on Ω× (0, T ) in the Leray-Hopf class

LHT = L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω))(1.2)

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes
system (1.1) with data u0,f , if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T(1.3)

holds for each test function w ∈ C∞0 ([0, T );C∞0,σ(Ω)), and if the energy inequal-
ity

1

2
‖u(t)‖22 +

∫ t

0

‖∇u‖22 dτ ≤ 1

2
‖u0‖22 −

∫ t

0

(F,∇u) dτ(1.4)

is satisfied for 0 ≤ t < T .
(ii) A weak solution u of (1.1) is called a strong Lsα(Lq)-solution with expo-

nents 2 < s ≤ ∞, 3 < q < ∞ and weight τα in time, where 0 < α < 1
2 and

2
s + 3

q = 1− 2α, if additionally the weighted Serrin condition holds:

u ∈

Lsα(0, T ;Lq(Ω)), i.e.,

∫ T

0

(τα‖u(τ)‖q)s dτ <∞, if 2 < s <∞,

L∞α (0, T ;Lq(Ω)), i.e., ess supτ∈(0,T ) τ
α‖u(τ)‖q <∞, if s =∞.

(1.5)

If in (1.5) α = 0 and 2
s + 3

q = 1, then u is called a strong solution (in the sense

of Serrin).

In this definition we use the usual Lebesgue and Sobolev spaces, Lq(Ω) with
norm ‖·‖Lq(Ω) = ‖·‖q and W k,q(Ω) with norm‖·‖Wk,q(Ω) = ‖·‖k;q, respectively,
for 1 < q < ∞ and k ∈ N. Let Ls(Lq) = Ls(0, T ;Lq(Ω)), 1 < q, s < ∞, with

norm ‖·‖Ls(0,T ;Lq(Ω)) = ‖·‖q,s;T =
( ∫ T

0
‖ · ‖sq dt

)1/s
denote the classical Bochner

spaces. If additionally α ≥ 0 is given, we define the weighted (in time) Bochner
spaces Lsα(0, T ;Lq(Ω)) = Lsα(Lq) with norm

‖ · ‖Lsα(0,T ;Lq(Ω)) = ‖ · ‖Lsα(Lq) =
(∫ T

0

tαs‖ · ‖sq dt
)1/s

.

Of course, if s =∞, then

L∞α (0, T ;Lq(Ω)) =
{
u : (0, T )→ Lq(Ω) strongly measurable,

‖u‖L∞α (0,T ;Lq(Ω)) = ess sup
τ∈(0,T )

τα‖u(τ)‖q <∞
}
.(1.6)

The expression 〈·, ·〉Ω = 〈·, ·〉 denotes the pairing of functions on Ω, and
〈·, ·〉Ω,T means the corresponding pairing on [0, T ) × Ω. Furthermore, to deal

with solenoidal vector fields we use the smooth function spaces C∞0 (Ω) and

C∞0,σ(Ω) = {v ∈ C∞0 (Ω) : div v = 0}, and the spaces Lqσ(Ω) = C∞0,σ(Ω)
‖·‖q

,
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W 1,q
0 (Ω) = C∞0 (Ω)

‖·‖1,q
, W 1,q

0,σ (Ω) = C∞0,σ(Ω)
‖·‖1,q

. Throughout this paper, A =

A2 denotes the Stokes operator in L2
σ(Ω). More general, Aq, 1 < q <∞, means

the Stokes operator in Lqσ(Ω), and e−tAq , t ≥ 0, is the semigroup generated by
Aq in Lqσ(Ω). Note that, with x = (x1, x2, x3) ∈ Ω ⊂ R3, for F = (Fij)

3
i,j=1,

u = (u1, u2, u3) we let divF =
(∑3

i=1 ∂iFij
)3
j=1

, u · ∇u = (u · ∇)u, so that

u · ∇u = div(uu) if u is solenoidal; here uu = (uiuj)
3
i,j=1.

We may assume in the following, without loss of generality, that each weak
solution u : [0, T ) → L2

σ(Ω) of (1.1) is weakly continuous, see Sohr [28, V.
Theorem 1.3.1]. Therefore, u(0) = u0 is well-defined.

For further properties of weak and strong solutions to (1.1) (in the classical
sense, i.e., α = 0, u ∈ Ls(0, T ;Lq(Ω)), 2

s + 3
q = 1), we refer to [2, 3, 19, 20,

22, 24, 29]. It is well-known that Serrin’s condition (1.5) with α = 0 yields the
regularity property

u ∈ C∞((0, T )× Ω),

provided that ∂Ω is of class C∞ and F ∈ C∞((0, T ) × Ω). Moreover, we get
uniqueness within the class of weak solutions satisfying the energy inequality
(1.4), see [28, V. Theorem 1.8.2, Theorem 1.5.1]. In the context of uniqueness
a stronger version of the energy inequality (1.4) is helpful: A weak solution
satisfies the strong energy inequality if

1

2
‖u(t)‖22 +

∫ t

t0

‖∇u‖22 dτ ≤ 1

2
‖u(t0)‖22 −

∫ t

t0

(F,∇u) dτ(1.7)

holds for a.a. t0 ∈ [0, T ) including t0 = 0 and for all t0 ≤ t < T . It is well-known
that for a bounded domain weak solutions constructed by standard approxi-
mation procedures (Galerkin approximation, Yosida approximation, difference
quotients in time, mollifiers in space and/or time) satisfy (1.7). Finally, if in
(1.4) there holds equality, u is said to satisfy the energy equality. The condition
u ∈ L4(0, T ;L4(Ω)) is known to be sufficient to guarantee the energy equality.
For conditions weaker than L4(L4)-integrability for bounded domains we refer
to [11].

Since the pioneering work of J. Leray and E. Hopf, see [20, 24], the existence
of at least one weak solution u of (1.1) is well-known. However, the existence
of a strong solution u could be shown up to now at least in a sufficiently small
interval [0, T ), 0 < T ≤ ∞, and under additional smoothness conditions on the
initial data u0 and the external force f . The first sufficient condition on the
initial data for a bounded domain seems to be due to [22], yielding a solution
class of so-called local strong solutions. Since then many results on sufficient
initial value conditions for the existence of local strong solutions have been
developed, see [2, 12, 15, 16, 19, 21, 23, 26, 28, 29], with weaker and weaker
assumptions on u0, thus making the space of initial values to guarantee the
existence of a local strong solution larger and larger.
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The optimal condition, i.e., sufficiency and necessity, was found by Sohr,
Varnhorn and the first author of this article, see [9, 10], and can be written in

terms of (solenoidal) Besov spaces B−1+3/q
q,sq (Ω) where 2

sq
+ 3

q = 1. This space

is defined by real interpolation as

B
−1+ 3

q
q,sq =

(
B

2
sq

q′,s′q

)′
=
(
D(Aq′)

′, Lqσ
)

1
2 (1+ 3

q ),sq
,

where Aq′ denotes the Stokes operator on the space Lq
′

σ (Ω), 1
q + 1

q′ = 1, of

solenoidal vector fields. Note that similar results in the whole space case are
well-known.

Recently, this result has been generalized by the authors ([5, 6]) to initial
values in

B
−1+ 3

q
q,s (Ω) =

(
D(Aq′)

′, Lqσ
)

1
2 (1+ 3

q ),s
,

where 2
s + 3

q = 1 − 2α, 0 < α < 1
2 . An equivalent explicit norm for u0 ∈

B
−1+ 3

q
q,s (Ω) is given by the weighted integral(∫ ∞

0

(
τα‖e−τAu0‖q

)s
dτ
)1/s

= ‖e−τAqu0‖Lsα(0,∞;Lq(Ω)) <∞;

note that this norm is scaling invariant with respect to the scaling properties of
the Navier-Stokes solutions. For further details see [6, §4]. The term ‖A−1u0‖q
which usually appears as an additional term on the left hand side of the norm
can be omitted since the semigroup on a bounded domain decays exponentially.
Moreover, we note that the interval of integration (0,∞) may be replaced by
any finite interval (0, δ), yielding a family of equivalent norms. In particular,
by choosing δ > 0 small, we can achieve that ‖e−τAqu0‖Lsα(0,δ;Lq(Ω)) is as small
as we want. Altogether, we get for sq < s1 < s2 <∞ a scale of growing Besov
spaces

(1.8) B
−1+ 3

q
q,sq ⊂ B

−1+ 3
q

q,s1 ⊂ B
−1+ 3

q
q,s2 ⊂

◦
B
−1+ 3

q
q,∞ ⊂ B

−1+ 3
q

q,∞ .

Here
◦
B−1+3/q
q,∞ (Ω) denotes the continuous interpolation space in this scale, also

called little Nikol’skii space, see Amann [4, p. 4, p. 8].

The space
◦
B−1+3/q
q,∞ (Ω), 1 < q 6= 3, was used by Amann [2] to construct

a global unique solution in C
(
[0, T );

◦
B−1+3/q
q,∞ (Ω)

)
when ‖u0‖B−1+3/q

q,∞
is small;

here Ω is a bounded or exterior domain, the whole or half space, includ-
ing the n-dimensional case with a suitable modification. Recently, Ri et al.
[27] showed for all 3 ≤ q < ∞ the existence of a local unique solution u ∈
L∞
(
0, T ;B0

q,∞(Ω)
)

for initial values u0 in B0
q,∞(Ω); if even u0 ∈

◦
B0
q,∞(Ω), then

u ∈ C0
(
[0, T );B0

q,∞(Ω)
)
. Note that B0

3,∞(R3) is a scaling invariant space, and
that analogous results are obtained for the n-dimensional whole and half space.
Similar results to those of this paper and of [6] are discussed by Haak and Kun-
stmann in [18]; the authors consider the whole space Rn in different scaling
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invariant function spaces, but bounded domains mainly in L2(Ω)-spaces. In
these papers the relation to weak Leray-Hopf solutions is not investigated. For

details on the Besov spaces B−1+3/q
q,∞ (Ω) and

◦
B−1+3/q
q,∞ (Ω) we refer to Section 5

and particularly to [2, 27].
Whereas the focus of the articles [2, 18, 27] and of numerous articles dealing

only with the whole space case are on solutions with values in a given Besov
space, our focus is on solutions with initial values in L2

σ(Ω) intersected with a
Besov space such that the solution is also a weak one. In this setting the main
results of [6] for a bounded smooth domain Ω ⊂ Rn read as follows:

Theorem 1.2 ([6, Theorems 1.2, 1.3]). Assume u0 ∈ L2
σ(Ω) and f = divF

where F ∈ L2(0, T ;L2(Ω)) ∩ Ls/22α (0, T ;Lq/2(Ω)); here, 2 < s <∞, 3 < q <∞
and 0 < α < 1

2 satisfying 2
s + 3

q = 1− 2α.

(i) Then there exists a constant ε∗ = ε∗(q, s, α,Ω) > 0 with the following
property: If

‖e−τAu0‖Lsα(0,T ;Lq) + ‖F‖
L
s/2
2α (0,T ;Lq/2)

≤ ε∗,(1.9)

then the Navier-Stokes system (1.1) has a unique strong Lsα(Lq)-solution with
data u0, f on the interval [0, T ).

(ii) The condition u0 ∈ B
−1+ 3

q
q,s (Ω) is sufficient and necessary for the exis-

tence of a (unique) local in time strong Lsα(Lq)-solution of the Navier-Stokes
system (1.1).

Of course, solutions with initial values in the space B
−1+ 3

q
q,s (Ω) larger than

the optimal space studied in [9, 10] are strong solutions in the sense of Serrin
on each interval (δ, T ] with 0 < δ < T , but not on (0, T ]. Another disadvantage
is related to Serrin’s Uniqueness Theorem: It cannot be proved that a weak
solution satisfying the energy inequality and a strong Lsα(Lq)-solution with the
same data u0, f coincide. This problem can be solved for so-called well-chosen
weak solutions constructed by an admissible approximation scheme. E.g., weak
solutions constructed by a semigroup-Yosida approximation procedure are well-
chosen. The same holds under some restrictive conditions for solutions given
by Galerkin’s method. For details we refer to [6] and in particular to [5].

The aim of this paper is the study of the limit case s = ∞, i.e., u0 ∈
B
−1+ 3

q
q,∞ (Ω) working with the largest space in the scale (1.8). The disadvantage of

this space is the fact that it is no longer separable and that the norm ‖e−τAqu0‖q
will not converge to 0 as τ → 0.

Now our first main theorem reads as follows:

Theorem 1.3. Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class
C2,1, and let 0 < T ≤ ∞, 3 < q <∞ and 0 < α < 1

2 with 3
q = 1− 2α be given.

Consider the Navier-Stokes equation (1.1) with initial value u0 ∈ L2
σ(Ω) ∩

B−1+3/q
q,∞ (Ω) and an external force f = divF where F ∈ L2(0, T ;L2(Ω)) ∩
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L∞2α(0, T ;Lq/2(Ω)). Then there exists a constant ε∗ = ε∗(q, α,Ω) > 0 with the
following property: If

‖e−τAu0‖L∞α (0,T ;Lq) + ‖F‖L∞2α(0,T ;Lq/2) ≤ ε∗,(1.10)

then (1.1) has a strong L∞α (Lq)-solution with data u0, f on the interval [0, T ).
This solution is unique in the class of all strong L∞α (Lq)-solutions on (0, T )

with sufficiently small norm in L∞α (Lq).

The reader is referred to Theorem 5.1 in Section 5 below for an explanation

of the Besov space B−1+3/q
q,∞ (Ω) which is equipped with norm ‖e−τA ·‖L∞α (0,T ;Lq).

This space has the disadvantage that in general the term τα‖e−τAu0‖q does
not converge to 0 as τ → 0. This drawback is removed in the continuous

interpolation space
◦
B−1+3/q
q,∞ where the property limτ→0 τ

α‖e−τAu0‖q = 0 is
satisfied by definition, see Section 5. By analogy, we define the subspace
◦
L
∞
2α

(
0, T ;Lq/2(Ω)

)
=
{
F ∈ L∞2α

(
0, T ;Lq/2(Ω)

)
: ‖F‖L∞2α(0,t;Lq/2) → 0 as t→ 0

}
of L∞2α(0, T ;Lq/2(Ω)). In this case, condition (1.10) can be achieved by choosing
T sufficiently small, and we get the following variant of Theorem 1.3:

Corollary 1.4. Under the assumptions of Theorem 1.3 let u0 ∈ L2
σ(Ω) ∩

◦
B−1+3/q
q,∞ (Ω) and f = divF where F ∈ L2(0, T ;L2(Ω)) ∩

◦
L∞2α

(
0, T ;Lq/2(Ω)

)
.

Then the Navier-Stokes system (1.1) has a unique strong L∞α (Lq)-solution with
data u0, f on some interval [0, T ′) ⊂ [0, T ).

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 are fulfilled.
(i) The condition

ess sup
τ∈(0,∞)

τα‖e−τAu0‖q <∞(1.11)

is necessary for the existence of a strong L∞α (Lq)-solution u ∈ L∞α (0, T ;Lq) of
the Navier-Stokes system (1.1) with data u0, f in some interval [0, T ), 0 < T ≤
∞.

(ii) If additionally F ∈
◦
L∞2α

(
0, T ;Lq/2(Ω)

)
, then the condition

u0 ∈
◦
B
−1+ 3

q
q,∞ (Ω)(1.12)

is even necessary and sufficient for the existence of a unique strong L∞α (0, T ;Lq)

-solution u ∈
◦
L∞α
(
0, T ;Lq(Ω)

)
of the Navier-Stokes system (1.1).

We note that the solutions constructed in Theorems 1.2 and 1.3, Corollaries

1.4 and 1.5 are continuous in time with values in B−1+3/q
q,s and

◦
B
−1+ 3

q
q,∞ , i.e.,

u ∈ C
(
[0, T ];B−1+3/q

q,s (Ω)
)

and u ∈ C
(

[0, T ];
◦
B−1+3/q
q,∞ (Ω)

)
,

respectively. This includes the more classical case u0 ∈ B−1+3/q
q,sq where 2

sq
+ 3
q =

1 considered in [9, 10]. For details of the proof we refer to the forthcoming
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article [7]. In case that u0 ∈ B−1+3/q
q,∞ (Ω) continuity of u(t) holds on (0, T ], but

cannot be expected at t = 0+.

For the definition of well-chosen weak solutions we need a slight extension
of Definition 1.2 in [5] to the case of L∞-type spaces. Because of the bad

approximation properties of the spaces B
−1+ 3

q
q,∞ (Ω) and L∞2α

(
0, T ;Lq/2(Ω)

)
it

is convenient to work in this definition immediately with the smaller spaces
◦
B−1+3/q
q,∞ and

◦
L∞2α

(
0, T ;Lq/2(Ω)

)
. Of course, a version with the spaces B1+3/q

q,∞ (Ω)

and L∞2α
(
0, T ;Lq/2(Ω)

)
is possible, but looks awkward.

Definition 1.6. A well-chosen weak solution v is a weak solution of the
Navier-Stokes system (1.1) with v(0) = u0 ∈ L2

σ(Ω) and force f = divF ,
F ∈ L2

(
0, T ;L2(Ω)

)
, satisfying the strong energy inequality (1.7), defined by

a concrete so-called admissible approximation procedure, and compatible with
the notion of L∞α (Lq)-solutions in the following sense:

(1) The initial value u0 ∈
◦
B
−1+ 3

q
q,∞ is approximated by a sequence (u0n) ⊂

L2
σ(Ω) ∩ B

−1+ 3
q

q,∞ (Ω) converging to u0 in L2
σ(Ω) ∩ B

−1+ 3
q

q,∞ (Ω) as n→∞.

(2) The force F ∈ L2
(
0, T ;L2(Ω)

)
∩
◦
L∞2α

(
0, T ;Lq/2(Ω)

)
is approximated

by a sequence (Fn) ⊂ L2
(
0, T ;L2(Ω)

)
∩ L∞2α

(
0, T ;Lq/2(Ω)

)
such that

Fn → F in both spaces.
(3) The approximation method yields approximate weak solutions (un),

uniformly bounded in LHT , and containing a subsequence (unk) such
that unk ⇀ v in Leray-Hopf’s class LHT , i.e., unk ⇀ v in L2

(
0, T ;

H1(Ω)
)

and unk
∗
⇀ v in L∞

(
0, T ;L2

σ(Ω)
)

as k →∞.
(4) (un) is uniformly bounded in L∞α (0, T ′;Lq) for some T ′ ∈ (0, T ].

Remark 1.7. (1) The crucial part of Definition 1.6 for an admissible approxi-
mation procedure is assumption (4) on (un).

(2) The strong convergence u0n → u0 in L2(Ω) in Definition 1.6(1) can
be replaced by the corresponding weak convergence. By analogy, the strong
convergence Fn → F in L2

(
0, T ;L2(Ω)

)
may be replaced by a weak one due to

Definition 1.6(2).
(3) Although the assumptions on F , Fn do not imply that ‖Fn‖L∞2α(0,t;Lq/2)

converges to 0 as t → 0 uniformly in n ∈ N, the following smallness condition
is satisfied due to Definition 1.6(2): For any ε > 0 there exists an Nε ∈ N and
T ′ ∈ (0, T ] such that

(1.13) ‖Fn‖L∞2α(0,T ′;Lq/2) ≤ ε for all n ≥ Nε.

By analogy, for any ε > 0 there exist an Nε ∈ N and T ′ ∈ (0, T ] such that

(1.14) sup
(0,T ′)

τα‖e−τAqu0n‖q ≤ ε for all n ≥ Nε.

Now our main theorem on uniqueness reads as follows.
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Theorem 1.8. Under the assumptions of Theorem 1.3 let u0 ∈ L2
σ(Ω) ∩

◦
B−1+3/q
q,∞ (Ω) and f = divF with F ∈ L2

(
0, T ;L2(Ω)

)
∩
◦
L∞2α

(
0, T ;Lq/2(Ω)

)
be given. Furthermore, let u ∈

◦
L∞α
(
0, T ;Lq(Ω)

)
be the unique strong L∞α (Lq)-

solution of (1.1) with data u0, F .
(i) The solution u is unique within the class of all well-chosen weak solutions

of (1.1) in the sense of Definition 1.6.
(ii) Assume that each subsequence of (un) converging weakly in LHT con-

verges weakly to any weak solution of (1.1). Then the whole sequence (un)
converges to u. Moreover, for any sequence of initial values (u0n) and ex-
ternal forces (Fn) approximating u0 and F in the sense of Definition 1.6(1),
(2), respectively, and generating approximate solutions (un) with a subsequence
weakly convergent in LHT to any weak solution of (1.1), the whole sequence
(un) converges weakly in LHT to u.

The crucial point is to show that an approximation procedure for the con-
struction of weak solutions is admissible in the sense of Definition 1.6.

Theorem 1.9. Let 3 < q < ∞, 0 < α < 1
2 and 3

q = 1− 2α. Then the Yosida

approximation scheme and, if 3 < q ≤ 4, the Galerkin approximation scheme
are admissible. To be more precise, in this context these methods are defined
as follows:

(i) (The Yosida approximation scheme) Let Jn = (I + 1
nA

1/2)−1 denote the

Yosida operator, let u0n = Jnu0, and assume that Fn → F in L2
(
0, T ;L2(Ω)

)
∩

◦
L∞2α(0, T ∗;Lq/2(Ω)) for some 0 < T ∗ ≤ T . Then the approximate solution un
is defined as the solution of the approximate Navier-Stokes system

∂tun −∆un + (Jnun) · ∇un +∇pn = divFn, div un = 0,

un|∂Ω = 0, un(0) = u0n.
(1.15)

(ii) (The Galerkin approximation scheme) Let Πn denote the L2
σ-projection

onto the space of the first n eigenfunctions of the Stokes operator A2, and sup-
pose that u0n ∈ ΠnL

2
σ(Ω) as well as Fn ∈ L2(0, T ;L2(Ω)) satisfy the assump-

tions of Definition 1.6(1), (2). Then let un denote the Galerkin approximation
of (1.1) with data u0n, Fn.

(iii) In both cases (i) and (ii) the assumption in Theorem 1.8(ii) is satisfied.
Hence the whole sequence given by these admissible approximation schemes
converges to the well-chosen weak solution, irrespective of the sequences (u0n)
and (Fn).

2. Preliminaries

For the reader’s convenience, we first explain some well-known properties
of the Stokes operator. Let Ω ⊂ Rn be a bounded domain of class C2,1, let
[0, T ), 0 < T ≤ ∞, be a time interval, and let 1 < q < ∞. Then Pq : Lq(Ω)→
Lqσ(Ω) denotes the Helmholtz projection, and the Stokes operator Aq = −Pq∆ :
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D(Aq)→ Lqσ(Ω) is defined with domain D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω)

and range R(Aq) = Lqσ(Ω). Since Pqv = Pγv for v ∈ Lq(Ω) ∩ Lγ(Ω) and
Aqv = Aγv for v ∈ D(Aq) ∩ D(Aγ), 1 < γ < ∞, we sometimes write Aq = A
to simplify the notation if there is no misunderstanding. Furthermore, let
Aαq : D(Aαq ) → Lqσ(Ω), −1 ≤ α ≤ 1, denote the fractional powers of Aq. It
holds D(Aq) ⊆ D(Aαq ) ⊆ Lqσ(Ω), R(Aαq ) = Lqσ(Ω) if 0 ≤ α ≤ 1. We note that

(Aαq )−1 = (A−αq ) and (Aq)
′

= Aq′ where 1
q + 1

q′ = 1.

Now we recall the embedding estimate

‖v‖q ≤ c‖A
α
γ v‖γ , v ∈ D(Aαγ ), 1 < γ ≤ q <∞, 2α+

3

q
=

3

γ
, 0 ≤ α ≤ 1,(2.1)

and the estimate

‖Aαq e−tAqv‖q ≤ ct
−αe−δt‖v‖q , v ∈ L

q
σ(Ω), 0 ≤ α ≤ 1, t > 0,(2.2)

with constants c = c(Ω, q) > 0, δ = δ(Ω, q) > 0, see [1, 8, 13, 14, 17, 29]. Using
(2.1), (2.2) with 1 < γ ≤ q < ∞, 2β + 3

q = 3
γ and constants c, δ > 0 not

depending on t, we obtain for v ∈ Lγσ(Ω) that A−βv ∈ Lqσ(Ω) and that

‖e−tAv‖q ≤ ct
−βe−δt‖v‖γ , t > 0.(2.3)

Consequently, ‖e−tAu0‖q with u0 ∈ L2
σ(Ω) is well-defined at least for t > 0, and

there holds ess sup(δ,∞)(τ
α‖e−τAu0‖q) <∞ for any δ > 0 and α > 0. In partic-

ular, the conditions sup(0,∞)(τ
α‖e−τAu0‖q) <∞ and sup(0,δ)(τ

α‖e−τAu0‖q) <
∞ are equivalent for any δ > 0.

Further note that D(A
1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) and that the norms

‖A
1
2
q v‖q ≈ ‖∇v‖q , v ∈ D(A

1
2
q ),

are equivalent. In particular, if q = 2, then ‖A1/2
2 v‖2 = ‖∇v‖2 for v ∈ D(A1/2).

Consider any g = divG with G = (Gij)
3
i,j=1 ∈ Lq(Ω). Then a duality

argument, see [16, Lemma 2.1], [28, Lemma 2.6.1], shows that A
−1/2
q Pq divG ∈

Lqσ(Ω) is well-defined by the identity 〈A−
1
2

q Pq divG,ϕ〉 = −〈G,∇A−
1
2

q′ ϕ〉 for

ϕ ∈ Lq′σ (Ω), and that

‖A−
1
2

q Pq divG‖q ≤ c‖G‖q(2.4)

holds with c = c(Ω, q) > 0.
The Yosida approximation operator Jn defined by Jn = (I + 1

nA
1/2)−1,

n ∈ N, has on each space Lqσ(Ω), 1 < q < ∞, the following fundamental
properties:

‖Jn‖L(Lqσ) +
∥∥ 1

n
A

1
2 Jn

∥∥
L(Lqσ)

≤ Cq <∞ for all n ∈ N,(2.5)

Jnu→ u in Lqσ(Ω) for each u ∈ Lqσ(Ω) as n→∞.(2.6)
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Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev in-
equality on weighted Ls-spaces on R, cf. [30, 31],

Lsα(R) =
{
u : ‖u‖Lsα =

(∫
R

(|τ |α|u(τ)|)s dτ
)1/s

<∞
}
, α ∈ R, s ≥ 1.

Lemma 2.1. Let 0 < λ < 1, 1 < s1 ≤ s2 < ∞, − 1
s1

< α1 < 1 − 1
s1

,

− 1
s2
< α2 < 1− 1

s2
and 1

s1
+(λ+α1−α2) = 1+ 1

s2
, α2 ≤ α1. Then the integral

operator

Iλf(t) =

∫
R
|t− τ |−λf(τ) dτ

is bounded as operator Iλ : Ls1α1
(R)→ Ls2α2

(R).

3. Proof of Theorem 1.3, Corollaries 1.4 and 1.5

Proof of Theorem 1.3. Let Ef,u0
denote the solution of the instationary Stokes

problem on Ω× (0, T ) with data f, u0:

∂tv −∆v +∇p = f, div v = 0

v|∂Ω = 0, v(0) = u0,

i.e.,

Ef,u0
(t) = e−tAu0 +

∫ t

0

A1/2e−(t−τ)AA−1/2P divF (τ) dτ

=: E0,u0
(t) + Ef,0(t).(3.1)

Evidently, the assumptions u0 ∈ L2
σ(Ω) and F ∈ L2(0, T ;L2(Ω)) imply that

Ef,u0
∈ C0([0, T ];L2)∩L2(0, T ;H1), satisfying the energy equality. Moreover,

‖∇Ef,u0
‖L2(0,T ;L2) ≤ c

(
‖u0‖2 + ‖F‖L2(0,T ;L2(Ω))

)
.

By assumption (1.10) there holds E0,u0 ∈ L∞α (Lq). Finally, using the estimates
(2.1) and (2.2) with 2β + 3

q = 3
q/2 for q > 3, i.e., β = 3

2q = 1
2 − α,

‖Ef,0(t)‖q ≤ c
∫ t

0

‖A 1
2 +βe−(t−τ)A(A−

1
2P div)F (τ)‖ q

2
dτ

≤ c
∫ t

0

(t− τ)
−1+α

τ−2ατ2α‖F (τ)‖ q
2

dτ

≤ c ess sup
(0,t)

‖τ2αF (τ)‖ q
2

∫ t

0

(t− τ)
−1+α

τ−2α dτ(3.2)

= ct−α ess sup
(0,t)

‖τ2αF (τ)‖ q
2
.

Hence we proved that ‖Ef,0‖L∞α (0,t;Lq) ≤ c‖F‖L∞2α(0,t;Lq/2) and even

(3.3)
‖E0,u0

‖L∞α (0,t;Lq) + ‖Ef,0‖L∞α (0,t;Lq) ≤ c
(
‖e−τAu0‖L∞α (0,t;Lq) + ‖F‖L∞2α(0,t;Lq/2)

)
with a constant c > 0 independent of t > 0.
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We then set ũ = u− Ef,u0
which solves the (Navier-)Stokes system

∂tũ−∆ũ+ u · ∇u+∇p = 0, div ũ = 0

ũ|∂Ω = 0, ũ(0) = 0.

At least formally, we can write

ũ(t) = −
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(u⊗ u)(τ) dτ(3.4)

so that we define the nonlinear operator

F(ũ)(t)=−
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(u⊗ u)(τ) dτ, u = ũ+ Ef,u0
.(3.5)

With β = 3
2q = 1

2 − α we get as in (3.1), (3.2)

‖F(ũ)(t)‖q ≤ c
∫ t

0

(t− τ)
−1+α

τ−2α(τα‖u‖q)2 dτ.(3.6)

We proceed as in (3.2), (3.3) and conclude that

(3.7) ‖F ũ‖L∞α (0,t;Lq) ≤ c‖u‖
2
L∞α (0,t;Lq).

Since u = ũ+ Ef,u0
we get from (3.3), (3.7) that for any T > 0

‖F ũ‖L∞α (0,T ;Lq) ≤ c0
(
‖ũ‖L∞α (0,T ;Lq)+ ‖F‖L∞2α(0,T ;Lq/2)+ ‖e−τAu0‖L∞α (0,T ;Lq)

)2
,

(3.8)

where c0 = c0(Ω, q) > 0 is independent of T and the data. With the abbrevia-
tion

b = b(T ) := ‖F‖L∞2α(0,T ;Lq/2) + ‖e−τAu0‖L∞α (0,T ;Lq)

we obtain from (3.8) the estimate

(3.9) ‖F ũ‖L∞α (0,T ;Lq) + b ≤ c0(‖ũ‖L∞α (0,T ;Lq) + b)2 + b.

Assume the smallness condition

(3.10) 4bc0 = 4c0
(
‖F‖L∞2α(0,T ;Lq/2) + ‖e−τAu0‖L∞α (0,T ;Lq)

)
< 1.

Obviously, the quadratic equation r = c0r
2+b has a minimal positive root given

by r1 = 2b(1+
√

1− 4bc0)−1 ∈ (b, 2b). Note that r1 = r1(b, c0) is increasing in b
as well as in c0 and that r1−b = c0r

2
1 ∈ (c0b

2, 4c0b
2). We conclude that F maps

the non-empty closed ball B = {v ∈ L∞α (0, T ;Lq) : ‖v‖L∞α (0,T ;Lq) ≤ r1− b} into
itself. Moreover, it is straightforward to modify the above estimates to show
that for ũ, û ∈ B

‖F ũ−F û‖L∞α (0,T ;Lq) ≤ 4bc0‖ũ− û‖L∞α (0,T ;Lq).

Since 4bc0 < 1, Banach’s Fixed Point Theorem proves the existence of a unique
fixed point ũ ∈ L∞α (0, T ;Lq) of F in B; this fixed point ũ solves (3.4). Hence
the mild solution u = ũ+ Ef,u0 is contained in L∞α (0, T ;Lq).

Now we will prove that this mild solution u is indeed a weak solution. To
this aim, we need the following lemmata.
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Lemma 3.1. The mild solution u constructed in the above procedure satisfies
∇u ∈ L2(0, T ;L2(Ω)).

Proof. We use a modification of the proof described in [10]. Since for the
moment differentiability properties of the mild solution u are yet unknown,
we apply the Yosida operator Jn = (I + 1

nA
1
2 )−1, n ∈ N, to (3.4) and write

JnP div u ⊗ u in the form JnP div(u ⊗ (ũ + Ef,u0
)), ũ = (I + 1

nA
1
2 )ũn, where

ũn = Jnũ. Then we have

JnP div u⊗ u

= JnP (u · ∇Ef,u0
) + JnP (u · ∇ũn) +

1

n
JnP div(u⊗A 1

2 ũn)

= JnP (u · ∇Ef,u0
) + JnP (u · ∇ũn) +

1

n
A

1
2 Jn(A−

1
2P div)(u⊗A 1

2 ũn).

By (2.5), (2.6) and Hölder’s inequality with 1
γ = 1

2 + 1
q we obtain the estimate

‖JnP div(u⊗ u)‖γ ≤ c‖u‖q
(
‖∇Ef,u0

‖2 + ‖∇ũn‖2 + ‖A 1
2 ũn‖2

)
= c‖u‖q

(
‖∇Ef,u0

‖2 + 2‖A 1
2 ũn‖2

)
.

Applying A
1
2 Jn to (3.4) it holds the identity

A
1
2 ũn(t) = −

∫ t

0

A
1
2 e−(t−τ)AJnP div(u⊗ u)(τ) dτ,

and by (2.1) with 2β + 3
2 = 3

γ , i.e., β = 3
2q = 1

2 − α, the estimate

‖A 1
2 ũn(t)‖2 ≤ c

∫ t

0

‖A 1
2 +βe−(t−τ)A‖‖JnP div(u⊗ u)(τ)‖γ dτ

≤ c
∫ t

0

(t− τ)−1+α‖u(τ)‖q
(
‖∇Ef,u0

(τ)‖2 + 2‖A 1
2 ũn(τ)‖2

)
dτ.

Now let s1 = 2, α1 = α, s2 = 2, α2 = 0, λ = 1−α, so that 1
2 + (1−α+α−0) =

1 + 1
2 . By Lemma 2.1 we have for any 0 < T1 ≤ T

‖A 1
2 ũn(t)‖L2(0,T1;L2)

≤ c
(∫ T1

0

(
τα‖u‖q(‖∇Ef,u0‖2 + ‖A 1

2 ũn‖2)
)2

dτ
)1/2

≤ c1‖u‖L∞α (0,T1;Lq)

(
‖∇Ef,u0

‖L2(0,T1;L2) + ‖A 1
2 ũn‖L2(0,T1;L2)

)
.

Next, to achieve for u = Ef,u0
+ ũ the smallness condition

c1‖u‖L∞α (0,T1;Lq) ≤
1

2
(3.11)

note that, with a constant c2 = c2(Ω, q) > 0,

c1‖u‖L∞α (0,T1;Lq) ≤ c2
(
‖e−τAu0‖L∞α (0,T1;Lq) + ‖F‖L∞2α(0,T1;Lq/2) + r1 − b

)
≤ c2(b+ r1 − b) ≤ 2c2b.
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Thus, in order to satisfy (3.11) by means of the condition

4c∗b < 1, c∗ := max(c0, c2),(3.12)

it suffices to replace in (3.10) c0 by c2. Then the absorption argument yields
the estimate

‖A 1
2 ũn‖L2(0,T1;L2) ≤ 2c1‖u‖L∞α (0,T1;Lq)‖∇Ef,u0‖L2(0,T1;L2) <∞

independent of n ∈ N. Consequently, using reflexivity arguments, A
1
2 ũ,∇ũ ∈

L2(0, T1;L2) and ∇u ∈ L2(0, T1;L2). �

Lemma 3.2. Under the assumptions of Lemma 3.1 we have the following
results:

(i) u ∈ Ls2(0, T ;Lq2) for all 2
s2

+ 3
q2

= 3
2 , 2 ≤ s2 ≤ ∞, 2 ≤ q2 ≤ 6.

(ii) ‖ũ(t)‖2 → 0 and u(t)→ u0 in L2(Ω) as t→ 0+.
(iii) u ∈ L4

α/(2+8α)(0, T ;L4(Ω)).

(iv) u satisfies the energy equality on [0, T ].

Proof. (i) From Lemma 3.1 we know that ∇u ∈ L2(0, T ;L2). Moreover, by
(2.3) with β = 3

2q = 1
2 − α, Hölder’s inequality implies that

‖ũ(t)‖2 ≤ c
∫ t

0

(t− τ)−
1
2 +ατ−α(τα‖u‖q)‖∇u‖2 dτ

≤ C‖u‖L∞α (0,t;Lq)‖∇u‖L2(0,t;L2);(3.13)

we note that here α > 0 is necessary. Hence

‖ũ‖L∞(0,t;L2) ≤ C‖u‖L∞α (0,t;Lq)‖∇u‖L2(0,t;L2).

From the properties u ∈ L∞(L2) and ∇u ∈ L2(L2) it follows immediately that
u ∈ Ls2(Lq2) as required in (i).

(ii) From (i), to be more precise from (3.13), we conclude that ‖ũ(t)‖2 → 0
as t→ 0. Since also e−tAu0 → u0 in L2(Ω) and Ef,0(t)→ 0 in L2(Ω) as t→ 0,
(ii) is proven.

(iii) Given q, α and β = 1
2+8α we define q1,s1 by 1

4 = β
q + 1−β

q1
and 2

s1
+ 3
q1

= 3
2 ,

i.e., s1 = 4(1−β). From Hölder’s inequality we know that ‖u‖4 ≤ ‖u‖
β
q ‖u‖

1−β
q1

.
Hence ∫ T

0

τ4αβ‖u‖44 dτ ≤
∫ T

0

(τα‖u‖q)
4β‖u‖4(1−β)

q1
dτ

≤ ‖u‖4βL∞α (Lq)‖u‖
4(1−β)

L4(1−β)(Lq1 )
<∞.

(iv) From (iii) we know that u ∈ L4(ε, T ;L4) for all 0 < ε < T . So, by [28,
IV. Theorem 2.3.1, Lemma 2.4.2] and for a.a. ε ∈ (0, T ), u is the unique weak
solution in L4(ε, T ;L4) on the interval (ε, T ) of the linear Stokes problem

∂tu−∆u+∇p = div F̃ , div u = 0

u|∂Ω = 0, u|t=ε = u(ε)
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with external force div F̃ , F̃ = F − u ⊗ u ∈ L2(ε, T ;L2) and initial value
u(ε) ∈ L4(Ω) ⊂ L2(Ω). Therefore, u satisfies the energy equality on (ε, T ), i.e.,

1

2
‖u(t)‖22 +

∫ t

ε

‖∇u‖22 dτ =
1

2
‖u(ε)‖22 −

∫ t

ε

(F,∇u) dτ

for all t ∈ (ε, T ) and a.a. ε ∈ (0, T ). Letting ε → 0 we conclude in view of (ii)
that u satisfies the energy equality even on [0, T ). �

Concerning uniqueness we note that r1 − b = c∗r
2
1 ∈ (c∗b

2, 4c∗b
2). Hence

u coincides with any other strong L∞α (0, T ;Lq(Ω))-solution v satisfying ṽ =
v − Ef,u0

∈ B; this can be achieved when ‖ṽ‖L∞α (0,T ′;Lq) ≤ c∗b2.
By Lemma 3.2 we obtain that u is a weak solution of (1.1); this completes

the proof of Theorem 1.3. �

Proof of Corollary 1.4. The proof follows the lines of the proof of Theorem
1.3. However, by the assumptions on u0 and F conditions (3.10) and (3.12)
can be achieved by choosing T ′ > 0 sufficiently small. Given any other strong
L∞α (0, T ;Lq)-solution v we find T ′ ≤ T such that ‖ṽ‖L∞α (0,T ′;Lq) < c∗b

2. Then
v coincides with u on (0, T ′). �

Proof of Corollary 1.5. (i) Assume that u ∈ L∞α (0, T ;Lq), 0 < T ≤ ∞, is a
strong L∞α (Lq) solution of (1.1). Recall that E0,u0

= u − ũ − Ef,0 where by
(3.7) ũ = F ũ ∈ L∞α (Lq), and by (3.2) Ef,0 ∈ L∞α (Lq). Hence E0,u0

∈ L∞α (Lq)
as well, and (1.11) is satisfied.

(ii) By assumption on F and in view of the estimate (3.2), we conclude that

Ef,0 ∈
◦
L∞α
(
0, T ;Lq

)
. Given that u ∈

◦
L∞α
(
0, T ;Lq

)
, also ũ = F ũ ∈

◦
L∞α
(
0, T ;Lq

)
due to (3.7). Hence we get that u0 ∈

◦
B−1+3/q
q,∞ . �

4. Proof of Theorems 1.8 and 1.9

Proof of Theorem 1.8. By Definition 1.6(3) there exists a sequence of approx-
imate weak solutions (un) bounded in LHT such that a subsequence (unk)
converges to a weak solution v ∈ LHT of (1.1) satisfying the strong energy
equality (1.7).

Since (un) is uniformly bounded in L∞α (0, T ′;Lq) with T ′ from Definition
1.6(4) we find a subsequence (un′k) of (unk) converging weakly-∗ in L∞α (0, T ′;Lq)

to an element v′ ∈ L∞α (0, T ′;Lq). Now, since unk ⇀ v in LHT ′ , we may con-
clude that v = v′ on (0, T ′); in particular, v′ is a weak and even a strong
L∞α (Lq)-solution of (1.1) on (0, T ′). Since strong L∞α (Lq)-solutions are unique
by Theorem 1.3 on some interval (0, T ′′), v = v′ = u on (0, T ′′) ⊂ (0, T ′). This
uniqueness also implies that any other subsequence (umk) of (un) converging
weakly in LHT ′ to any weak solution actually converges weakly to v′ on (0, T ′′)
as k → ∞. Hence the whole sequence (un) converges weakly to v on (0, T ′′).
Moreover, again due to uniqueness, this result will hold for any sequence (u0n)
and (Fn) with convergence properties as in Definition 1.6.
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If T ′′ < T , then we find due to (SEI) applied to v some 0 < T ∗ ≤ T ′′ such
that the weak solution v satisfies the energy estimate on [T ∗, T ) with initial
time T ∗. Since 3

q = 1−2α < 1, there exists 2 < s <∞ with 2
s + 2

q = 1 such that

u ∈ Ls(T ∗, T ;Lq(Ω)) is a “classical” strong solution, and Serrin’s Uniqueness
Theorem implies that u = v even on [0, T ). �

Proof of Theorem 1.9. (i) Given u0, u0n and F , Fn as in Definition 1.6 classical
L2-methods, see [28, Ch. V.2], prove the existence of a unique approximate
solution un ∈ LHT of (1.15) and the convergence of a subsequence of (un) to a
weak solution u ∈ LHT of (1.1). Indeed, each un satisfies the energy equality,
and consequently the energy estimate

‖un(t)‖22 +

∫ t

0

‖∇un‖22 dτ ≤ ‖u0n‖22 +

∫ t

0

‖Fn‖22 dτ,

with a right-hand side uniformly bounded with respect to n ∈ N and 0 <
t < T due to the convergence properties of u0n, Fn in Definition 1.6, see also
Remark 1.7(2). Finally, (∂tun) is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
,

see [28, Lemma V. 2.6.1, Theorem V. 1.6.2]. Hence, by the Aubin-Lions-Simon
compactness theorem for Bochner spaces, there exists a subsequence (unk) of
(un) and v ∈ LHT such that

(4.1) unk ⇀ v in LHT , unk → v in L2
(
0, T ;L2

σ(Ω)
)

as k →∞. Furthermore,

(4.2) unk(t)→ v(t) in L2
σ(Ω) for a.a. t ∈ (0, T )

as k →∞; this step needs the extraction of a further subsequence, as the case
may be. Now (4.1) allows us to pass to the limit in (1.15) and to show that v
is a weak solution of (1.1) in the sense of Leray-Hopf. In particular, v satisfies
the energy inequality (1.4), and due to (4.2) even the strong energy inequality
(1.7).

In the second step of the proof we improve the previous results by exploiting

the properties of u0 in
◦
B−1+3/q
q,∞ and of F in

◦
L∞2α

(
0, T ;Lq/2

)
, see Definition 1.6.

Since (u0n) converges strongly to u0 in B−1+3/q
q,∞ we find some T ′ ∈ (0, T ] and

N∗ ∈ N such that

sup
τ∈(0,T ′)

‖ταe−τAu0n‖q ≤
ε∗
2

for all n ≥ N∗ where ε∗ > 0 is the absolute constant from (1.10), see also (1.14).
Furthermore, since Fn → F in L∞2α

(
0, T ;Lq/2(Ω)

)
we may also assume that

‖Fn‖L∞2α(0,T ′;Lq/2) ≤
ε∗
2

for all n ≥ N∗, see (1.13). We follow the construction of strong L∞α (Lq)-
solutions in the proof of Theorem 1.3, decompose the solution un of (1.15) into
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un = ũn+En where En solves the linear nonhomogeneous Stokes problem with
data u0n, Fn, i.e.,

(4.3) En(t) = e−tAu0n +

∫ t

0

A1/2e−(t−τ)
(
A−1/2P div

)
Fn(τ) dτ.

Then ũn = un−En has an integral representation based on the variation of
constants formula and can be considered as solution of the fixed point problem
ũn = Fnũn in L∞α

(
0, T ′;Lq(Ω)

)
where

Fnũn(t) = −
∫ t

0

A1/2e−(t−τ)A
(
A−1/2P div

)(
Jn(ũn +En)⊗ (ũn +En)

)
(τ) dτ ;

note that Fn differs from F in (3.5) only by the additional term Jn. Due to
fundamental properties of the Yosida operators Jn the fixed point of Fn can be
constructed by Banach’s Fixed Point Theorem in the same way as in the proof
of Theorem 1.3. By the assumptions on un, Fn and (3.8), (3.9), (3.10), ũn, un
satisfy the estimate

(4.4) ‖ũn‖L∞α (0,T ′;Lq), ‖un‖L∞α (0,T ′;Lq) ≤ Cε∗
with a constant C > 0 independent of n ≥ N∗. Thus (ũn)n∈N and (un)n∈N are
bounded in L∞α (0, T ′;Lq).

(ii) It is well known that the Stokes operator A2 on the bounded C2,1-
domain Ω ⊂ R3 admits an orthonormal basis of eigenfunctions ψk ∈ D(A2)
with corresponding eigenvalues λk monotonically increasing to ∞ as k → ∞.
For n ∈ N let

Πn : L2
σ(Ω)→ Vn := span{ψ1, . . . , ψn} ⊂ L2

σ(Ω)

denote the corresponding orthogonal projection. Obviously, ‖Πn‖L(L2
σ(Ω)) = 1

for all n ∈ N. In the Galerkin method we are looking for a solution un : [0, T )→
Vn of the ordinary differential n× n-system

(∂tun, ψk) + (∇un,∇ψk)− (un ⊗ un,∇ψk) = −(Fn,∇ψk)

un(0) = u0n ∈ Vn
(4.5)

on (0, T ) for each k = 1, . . . , n. By the L2-assumptions on u0n and Fn we
know that there exists a sequence of unique solutions (un) to (4.5) bounded
in LHT . Moreover, (∂tun) is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
. As

in the first part of the proof we find a subsequence (unk) of (un) and a vector
field v satisfying (4.1) and (4.2). In particular, v ∈ LHT is a weak solution to
(1.1) satisfying (1.7).

The crucial question is whether un is also a strong L∞α (0, T ′;Lq)-solution,
uniformly bounded in n. To address this problem we consider arbitrary linear
combinations of (4.5)1 to see that for all w ∈ D(A1/2)

(∂tun,Πnw) + (∇un,∇Πnw)− (un ⊗ un,∇Πnw) = −(Fn,∇Πnw)

un(0) = u0n ∈ Vn.
(4.6)
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Since Πn = PΠn, P ∗ = P , A commutes with Πn, and (∇un,∇Πnw) =
(Aun, w), we may omit the test function w ∈ H1

0,σ(Ω) and rewrite (4.6) in
the form

(4.7) ∂tun +Aun + ΠnP div(un ⊗ un) = ΠnP divFn, un(0) = u0n ∈ Vn.

Thus un(t) can be considered as a solution in W 1,4/3(0, T ) (with respect to
time) of an abstract Cauchy problem and as a mild solution with integral
representation

(4.8) un(t) = e−tAu0n−
∫ t

0

A1/2e−(t−τ)A
(
A−1/2ΠnP div

)
(un⊗un−Fn)(τ) dτ.

Although ‖Πn‖L(L2
σ(Ω)) = 1 and A−1/2P div ∈ L(Lq(Ω)) for each 1 < q <

∞, similar estimates will neither hold for Πn on Lqσ(Ω) nor for the operator
A−1/2ΠnP div on Lq(Ω) uniformly in n ∈ N. Actually, an estimate of the type
‖Πn‖L(Lqσ(Ω)) ≤ c(q) uniformly in n ∈ N is questionable when q 6= 2.

Using (2.1), (2.3) and exploiting the uniform boundedness and commutator
properties of Πn on L2

σ(Ω) we get that

‖A1/2e−(t−τ)A(A−1/2ΠnP div)(un ⊗ un − Fn)‖q
≤ c‖A 3

4 +αe−(t−τ)A(A−1/2ΠnP div)(un ⊗ un − Fn)‖2
≤ c‖A 3

4 +αe−(t−τ)A(A−1/2P div)(un ⊗ un − Fn)‖2
≤ c(t− τ)−1+α‖un ⊗ un − Fn‖q/2.

(4.9)

This estimate directly implies that with a constant c > 0 independent of n ∈ N
and T

‖un − e−tAu0n‖L∞α (0,T ;Lq) ≤ c
(
‖un‖2L∞α (0,T ;Lq) + ‖Fn‖L∞2α(0,T ;Lq/2)

)
.

Then by standard arguments we find T ′ ∈ (0, T ) independent of n ∈ N such
that (un) ⊂ L∞α (0, T ′;Lq) is uniformly bounded.

Now we complete the proof as in the previous case. �

5. Interpretation in terms of Besov spaces

For 1 < q < ∞, 1 ≤ r ≤ ∞ and t ∈ R let Btq,r(R3) denote the usual Besov

spaces, see [32, 2.3.1], and define for the bounded domain Ω ⊂ R3 the space
Btq,r(Ω) by restriction of elements in Btq,r(R3) in the sense of distributions to Ω;

the norm of u ∈ Btq,r(Ω) is given by the infimum of norms of all v ∈ Btq,r(R3)
such that v|Ω = u. Concerning Besov spaces on Ω with vanishing trace - if
possible - the definition is modified as follows: Considering only vector fields
rather than scalar-valued functions and the range t ∈ [−2, 2] we follow Amann



1500 R. FARWIG, Y. GIGA, AND P.-Y. HSU

[4], [2] and define

(5.1) Bt
q,r(Ω) =


{u ∈ Btq,r(Ω)3; γu = 0} 1/q < t ≤ 2

{u ∈ B1/q
q,r (R3)3; supp(u) ⊂ Ω} 1/q = t

Btq,r(Ω)3 0 ≤ t < 1/q(
B−tq′,r′(Ω)

)′
(1 < r ≤ ∞) −2 ≤ t < 0,

where γ denotes the trace operator defined by γu = u|∂Ω for continuous func-
tions. For spaces of solenoidal vector fields on Ω let

(5.2) Btq,r(Ω) =


Bt
q,r(Ω) ∩ Lqσ(Ω) 0 < t ≤ 2

cl
(
C∞0,σ(Ω)

)
in B0

q,r(Ω) t = 0(
B−tq′,r′(Ω)

)′
(1 < r ≤ ∞) −2 ≤ t < 0

;

here “cl” denotes the closure. Note that u ∈ Btq,r(Ω) with 1
q < t ≤ 2 vanishes

on ∂Ω (γu = 0) by (5.1), but that only the normal component of u vanishes on
∂Ω when 0 < t ≤ 1

q since u ∈ Lqσ(Ω).

Moreover, we need the spaces

◦
Btq,∞(Ω) := cl

(
Ht
q(Ω) ∩ Lqσ(Ω)

)
in Btq,∞(Ω), −2 ≤ t ≤ 2,

where Ht
q(Ω) is a Bessel potential space defined by restriction of the usual

Bessel potential space Ht
q(R3)3 to vector fields on Ω (and vanishing on ∂Ω as

in (5.1)), cf. [4, pp. 3–4]. For 0 < |t| < 2 these spaces are also called little
Nikol’skii space and denoted by ntq,0,σ(Ω). Then, using the notation (·, ·)θ,r,
1 ≤ r <∞, of real interpolation, and (·, ·)0

θ,∞ for the continuous interpolation

functor, Theorem 3.4 in [2] states that

(Lqσ(Ω),D(Aq))θ,r = B2θ
q,r(Ω), 0 < θ < 1,(5.3)

(Lqσ(Ω),D(Aq))
0
θ,∞ =

◦
B2θ
q,∞(Ω), 0 < θ < 1.(5.4)

Note that D(Aq) is equipped with its graph norm, and that for a bounded do-
main this graph norm can be simplified to ‖Aq ·‖q. As is well-known ([25, Propo-
sition 6.2, Exercise 6.1.1(1)], equivalent norms on the spaces (Lqσ(Ω),D(Aq))θ,r,
1 ≤ r <∞, are given by

‖u‖B2θ
q,r
∼
(∫ T

0

(
τ1−θ‖Aqe−τAqu‖q

)r dτ

τ

)1/r

,

where T ∈ (0,∞) can be chosen arbitrarily and an additional term ‖u‖q on the
right-hand side can be omitted since Ω is bounded. For r =∞ we have

(5.5) ‖u‖B2θ
q,r
∼ sup

(0,T )

τ1−θ‖Aqe−τAqu‖q.
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In the case (5.4)
◦
B2θ
q,∞(Ω) may be equipped with the equivalent norm given in

(5.5), but elements u ∈
◦
B2θ
q,∞(Ω) enjoy the further property that

(5.6) lim
τ→0

τ1−θ‖Aqe−τAqu‖q = 0.

The conclusion is that the spaces (Lqσ(Ω),D(Aq))θ,∞ and (Lqσ(Ω),D(Aq))
0
θ,∞

are special Besov spaces characterized by (5.5) and (5.5)-(5.6), respectively.
The aim is to find similar characterizations of those spaces and norms used

in Sections 1-4. Theorem 3.4 in [2] applies to negative exponents of regularity
as well. E.g., for −1 < θ < 0 and 1 < r <∞, we have by (5.2)(

Lqσ(Ω),D(Aq′)
′)
−θ,r =

((
Lq
′

σ (Ω),D(Aq′)
)
−θ,r′

)′
=
(
B−2θ
q′,r′(Ω)

)′
= B2θ

q,r(Ω).

To deal with the cases r = 1 and r =∞ note that Aq is an isomorphism from
D(Aq) to Lqσ(Ω) and also from Lqσ(Ω) to D(Aq′)

′. Hence, for 1 ≤ r ≤ ∞ and
−1 < θ < 0 (

D(Aq′)
′, Lqσ(Ω)

)
1+θ,r

= A
((
Lqσ(Ω),D(Aq)

)
1+θ,r

)
,(5.7)

with a similar result for the continuous interpolation functor (·, ·)0
θ,∞. Then we

get the following characterizations of real interpolation spaces of D(Aq′)
′ and

Lqσ(Ω) (here −1 < θ < 0):(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,r
= B2θ

q,r(Ω), 1 ≤ r <∞,(5.8) (
D(Aq′)

′, Lqσ(Ω)
)

1+θ,∞ = B2θ
q,∞(Ω) ∼= B2θ

q,∞(Ω)/
(
B−2θ
q′,1 (Ω)

)⊥
,(5.9) (

D(Aq′)
′, Lqσ(Ω)

)0
1+θ,∞ =

◦
B2θ
q,∞(Ω) = cl

(
H2
q(Ω)

)
in
(
B−2θ
q′,1 (Ω)

)′
= cl

(
Lqσ(Ω)

)
in B2θ

q,∞(Ω).(5.10)

Actually, (5.8) for r = 1 and (5.10) follow from [2, Theorem 3.4], [4, p. 4], for
−1 < θ < 0. Moreover, to prove (5.9) we use the duality theorem of real inter-

polation to get that identity
(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,∞ =
((
Lq
′

σ (Ω),D(Aq′)
)
−θ,1

)′
=
(
B−2θ
q′,1 (Ω)

)′
and the definition B2θ

q,∞(Ω) =
(
B−2θ
q′,1 (Ω)

)′
in (5.2); this space is

called Nikol’skii space N2θ
q,0,σ(Ω) in [2]. The second part of (5.9) is found in the

proof of [2, Remark 3.6] and a consequence of the isomorphism

B2θ
q,∞(Ω) =

(
B−2θ
q′,1 (Ω)

)′ ∼= B2θ
q,∞(Ω)/(B−2θ

q′,1 (Ω))⊥;

here B2θ
q,∞(Ω) =

(
B−2θ
q′,1 (Ω)

)′
by [32, Theorems 4.3.2 and 4.8.1], since in our ap-

plication −2θ = 2α > 1
q′ −1 and −2θ− 1

q′ /∈ Z. Recall that the characterization

(5.7) also holds when r =∞.
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Thus for any 1 ≤ r ≤ ∞ and −1 < θ < 0, by (5.7), (5.8), (5.9) and (5.3),(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,r
= A(B2+2θ

q,r (Ω)) = B2θ
q,r(Ω) and has the equivalent norm

‖u‖A(B2+2θ
q,r ) ∼

(∫ T

0

(
τ−θ‖e−τAqu‖q

)r dτ

τ

)1/r

, −1 < θ < 0, 1 ≤ r <∞,

(5.11)

‖u‖A(B2+2θ
q,∞ ) ∼ sup

τ∈(0,T )

τ−θ‖e−τAqu‖q, −1 < θ < 0.

(5.12)

This result was used in [10] when 2
r + 3

q = 1, θ = 0, 2 < r <∞.

Let us summarize these results for the case θ = −α = 1
2

(
3
q − 1

)
needed in

this paper.

Theorem 5.1. Let 3 < q < ∞, 0 < α < 1
2 and 3

q = 1 − 2α such that
1
2 ( 3
q + 1) = 1− α. Choose any T ∈ (0,∞).

(i) The real interpolation space
(
D(Aq′)

′, Lqσ(Ω)
)

1−α,∞ coincides with the

space of Besov-type B−1+3/q
q,∞ (Ω) and has the equivalent norm

sup
(0,T )

τα‖e−τAqu‖q.

(ii) The interpolation space
(
D(Aq′)

′, Lqσ(Ω)
)0

1−α,∞ equals the Besov space
◦
B−1+3/q
q,∞ (Ω), equipped with the equivalent norm sup(0,T ) τ

α‖e−τAqu‖q,
such that additionally the property limτ→0 τ

α‖e−τAqu‖q = 0 holds for

u ∈
◦
B−1+3/q
q,∞ (Ω).
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