ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

Ahmad Yousefian Darani, Fatemeh Soheilnia, Unsal Tekir, and Gulsen Ulucak

Abstract

Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2 -absorbing primary submodule of M if $0 \neq a b m \in N$ for any $a, b \in R$ and $m \in M$, then $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$. In this paper, we extended the concept of weakly 2 -absorbing primary ideals of commutative rings to weakly 2 -absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2 -absorbing primary submodule of M and it satisfies certain condition $0 \neq I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and submodule K of M, then $I_{1} I_{2} \subseteq(N: M)$ or $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$.

1. Introduction

Throughout this paper, we suppose that all rings are commutative with $1 \neq 0$. Let M be an R-module. A submodule N of M is called a proper submodule if $N \neq M$. Let N be a proper submodule of $M .(N: M)$ is the set of all $r \in R$ such that $r M \subseteq N$ for any submodule N of M. Then the radical of N, denoted by $M-\operatorname{rad}(\bar{N})$, is defined as the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then $M-\operatorname{rad}(N)=M$.

Following the concept of 2-absorbing ideals of commutative rings as in [2] and [10] and the concept of weakly prime ideals of commutative rings as in [8], Badawi and Darani introduced the concept of weakly 2 -absorbing ideals in commutative rings as in [3]. Afterwards, in [5], Badawi, Tekir and Yetkin introduced the concept of 2 -absorbing primary ideals as a generalization of primary ideals. Also, the concept of weakly 2-absorbing primary ideals, which is a generalization of weakly primary as in [1], was studied extensively by Badawi, Tekir and Yetkin, see [6]. A proper ideal I of R is called 2-absorbing (weakly 2-absorbing) primary ideal if $a b c \in I(0 \neq a b c \in I)$ for any $a, b, c \in R$,

[^0]then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. Recently, Mostafanasab and Darani generalized the concept of ϕ-2-absorbing primary ideals of commutative rings as in [4] to ϕ - n-absorbing primary ideals in commutative rings, see [13].

The concept of 2 -absorbing submodule and weakly 2 -absorbing submodules, generalizations of prime submodules and weakly prime submodules, respectively, were studied inclusively by Moradi, Azizi and other authours, see for example, [7]-[12]. A proper submodule N of M is called 2-absorbing (weakly 2-absorbing) submodule if $a b m \in N(0 \neq a b m \in N)$ for some $a, b \in R$ and $m \in M$, then $a b \in(N: M)$ or $a m \in N$ or $b m \in N$. For general informations of ideals and submodules, we refer the reader to [9] and [15].

In this study, we investigate weakly 2 -absorbing primary submodules. Recall that a proper submodule N of M is said to be 2 -absorbing (weakly 2 -absorbing) primary submodule of M if $a b m \in N(0 \neq a b m \in N)$ for any $a, b \in R$ and $m \in M$, then $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$.

Our main aim is to answer the question: If N is a weakly 2 -absorbing primary submodule of an R-module M and $0 \neq I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M, does it follow that $I_{1} I_{2} \subseteq(N: M)$ or $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$? (see, Theorem 2 and Theorem 3). Among some results of this paper, it is shown that (Theorem 7) if $M-\operatorname{rad}(0)$ is a prime submodule, then N is a weakly 2 -absorbing primary submodule if and only if N is a 2 -absorbing primary submodule. In Theorem 8 (Theorem 9), it is seen that if N is a weakly 2 -absorbing primary submodule, then ($N: M$) is a weakly 2 -absorbing primary ideal (hence if N is a weakly 2 -absorbing primary submodule, then $(N: M)$ is a weakly 2 -absorbing primary ideal). In Theorem 11, it is obtained that if $N=N_{1} \times N_{2}$ is a weakly 2-absorbing primary submodule, then $N=0$ or N is 2-absorbing primary.

2. On weakly 2 -absorbing primary submodules

Definition 1. A proper submodule N of an R-module M is called a weakly 2-absorbing primary submodule of M if $0 \neq a b m \in N$ for any $a, b \in R$ and $m \in M$, then $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$.

Proposition 1. Let N be a weakly 2-absorbing primary submodule of an R module M. Assume that K is a submodule of M with $N \varsubsetneqq K$. Then N is a weakly 2 -absorbing primary submodule of K.

Proof. Let $a, b \in R$ and $k \in K$ with $0 \neq a b k \in N$. Then $a b \in(N: M)$ or $a k \in M-\operatorname{rad}(N)$ or $b k \in M-\operatorname{rad}(N)$ as N is a weakly 2 -absorbing primary. Thus $a b \in(N: K)$ or $a k \in K-\operatorname{rad}(N)$ or $b k \in K-\operatorname{rad}(N)$ since $(N: M) \subseteq(N:$ $K)$.

The following result is an analogue of [6, Theorem 2.18].
Proposition 2. Let N, K be submodules of an R-module M with $K \subseteq N$. If N is a weakly 2-absorbing primary submodule of M, then N / K is a weakly

2-absorbing primary submodule of M / K. The converse is true when K is a weakly 2-absorbing primary submodule.

Proof. Assume that N is a weakly 2 -absorbing primary submodule of M. Let $a, b \in R$ and $m+K \in M / K$ where $0_{M / K} \neq a b(m+K) \in N / K$. Since $a b(m+K) \neq 0_{M / K}$, we get $a b m \in N$ and $a b m \notin K$. If $a b m=0$, we obtain $a b m+K=0_{M / K}$. So $a b m \neq 0$. Thus $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ as N is weakly 2 -absorbing primary. Consequently, we get $a b \in(N / K: M / K)$ or $a m+K=a(m+K) \in M-\operatorname{rad}(N) / K=M / K-\operatorname{rad}(N / K)$ or $b m+K=b(m+K) \in M-\operatorname{rad}(N) / K=M / K-\operatorname{rad}(N / K)$. Conversely, let K be a weakly 2 -absorbing primary submodule. Assume that N / K is a weakly 2-absorbing primary submodule of M / K. Let $a, b \in R$ and $m \in M$ where $0 \neq a b m \in N$. Then we have $a b m+K \in N / K$. If $a b m+K=0_{M / K}$, then $a b m \in K$. Thus $a b \in(K: M)$ or $a m \in M-\operatorname{rad}(K)$ or $b m \in M-\operatorname{rad}(K)$, since K is weakly 2 -absorbing primary. Therefore, $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, since $K \subseteq N$. Let $a b m+K=a b(m+K) \neq 0_{M / K}$. Then $a b \in$ $(N / K: M / K)$ or $a(m+K) \in M / K-\operatorname{rad}(N / K)$ or $b(m+K) \in M / K-\operatorname{rad}(N / K)$. Thus $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$.

The following result is an analogue of [6, Theorem 2.20].
Proposition 3. Let M be an R-module and S be a multiplicatively closed subset of R. If N is a weakly 2-absorbing primary submodule of M where $(N: M) \cap S=\emptyset$, then $S^{-1} N$ is a weakly 2 -absorbing primary submodule of $S^{-1} M$.

Proof. Let $0 \neq \frac{r}{s} \frac{t}{k} \frac{m}{l}=\frac{r t m}{s k l} \in S^{-1} N$ where $r, t \in R, s, k, l \in S$ and $m \in M$. Then there is an element u of S such that $0 \neq u r t m \in N$. Hence we get urt $\in(N: M)$ or urm $\in M-\operatorname{rad}(N)$ or $t m \in M-\operatorname{rad}(N)$ since N is weakly 2 -absorbing primary. Then $\frac{r}{s} \frac{t}{k}=\frac{u r t}{u s k} \in S^{-1}(N: M) \subseteq\left(S^{-1} N:\right.$ $\left.S^{-1} M\right)$ or $\frac{r}{s} \frac{m}{l}=\frac{u r m}{u s l} \in S^{-1}(M-\operatorname{rad}(N))=S^{-1} M-\operatorname{rad}\left(S^{-1} N\right)$ or $\frac{t}{k} \frac{m}{l}=\frac{t m}{k l} \in$ $S^{-1}(M-\operatorname{rad}(N))=S^{-1} M-\operatorname{rad}\left(S^{-1} N\right)$.

Definition 2. Let N be a weakly 2 -absorbing primary submodule of M. (a, b, m) is called a triple-zero of N if $a b m=0, a b \notin(N: M), a m \notin M-\operatorname{rad}(N)$ and $b m \notin M-\operatorname{rad}(N)$.

Note that if N is a weakly 2 -absorbing primary submodule of M and there is no triple-zero of N, then N is a 2 -absorbing primary submodule of M.
Proposition 4. Let N be a weakly 2-absorbing primary submodule of M and K be a proper submodule of M with $K \subseteq N$. Then for any $a, b \in R$ and $m \in M$, (a, b, m) is a triple-zero of N if and only if $(a, b, m+K)$ is a triple-zero of N / K.

Proof. Let (a, b, m) be a triple-zero of N for some $a, b \in R$ and $m \in M$. Then $a b m=0, a b \notin(N: M), a m \notin M-\operatorname{rad}(N)$ and $b m \notin M-\operatorname{rad}(N)$. By Proposition 2 , we get that N / K is a weakly 2 -absorbing primary submodule of M / K. Thus $a b(m+K)=K, a b \notin(N / K: M / K), a(m+K) \notin M-\operatorname{rad}(N) / K$
and $b(m+K) \notin M-\operatorname{rad}(N) / K$. Hence $(a, b, m+K)$ is a triple-zero of N / K. Conversely, assume that $(a, b, m+K)$ is a triple-zero of N / K. Suppose that $a b m \neq 0$. Then $a b m \in N$ since $a b(m+K)=K$. Thus $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ as N is weakly 2 -absorbing primary, a contradiction. So it must be $a b m=0$. Consequently, (a, b, m) is a triple-zero of N.

The following result is an analogue of [6, Theorem 2.9].
Theorem 1. Let N be weakly 2-absorbing primary submodule of M and (a, b, m) be a triple-zero of N for some $a, b \in R$ and $m \in M$. Then the followings hold.
(1) $a b N=a m(N: M)=b m(N: M)=0$.
(2) $a(N: M) N=b(N: M) N=m(N: M)^{2}=0$.

Proof. Suppose that (a, b, m) is a triple-zero of N for some $a, b \in R$ and $m \in M$.
(1) Assume that $a b N \neq 0$. Then there is an element $n \in N$ where $a b n \neq 0$. Thus $a b(m+n)=a b m+a b n=a b n \neq 0$. So $a(m+n) \in M-\operatorname{rad}(N)$ or $b(m+n) \in M-\operatorname{rad}(N)$ since $a b \notin(N: M)$ and N is weakly 2 -absorbing primary. Hence $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, which is a contradiction. Now, we suppose that $a m(N: M) \neq 0$. Thus there exists an element $r \in(N: M)$ where $a r m \neq 0$. Hence $a(r+b) m=a r m+a b m=a r m \neq 0$ and since $a m \notin M-\operatorname{rad}(N)$, $b m \in M-\operatorname{rad}(N)$ or $a b \in(N: M)$, a contradiction. Similarly, it can be easily seen that $\operatorname{bm}(N: M)=0$.
(2) Assume that $a(N: M) N \neq 0$. Then there are $r \in(N: M), n \in N$ such that $\operatorname{arn} \neq 0$. By (1), we get $a(b+r)(m+n)=\operatorname{arn} \neq 0$ and so $a(b+r) \in(N$: $M)$ or $a(m+n) \in M-\operatorname{rad}(N)$ or $(b+r)(m+n) \in M-\operatorname{rad}(N)$. Therefore, we obtain $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, a contradiction. In a similar way, one can easily seen that $b(N: M) N=0$. Let $m(N: M)^{2} \neq 0$. Thus there exist $r, s \in(N: M)$ where $m r s \neq 0$. By (1), we get $(a+r)(b+s) m=$ $r s m \neq 0$. Thus we have $(a+r) m \in M-\operatorname{rad}(N)$ or $(b+s) m \in M-\operatorname{rad}(N)$ or $(a+r)(b+s) \in(N: M)$ and so we get $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in(N: M)$, a contradiction. Consequently, $m(N: M)^{2}=0$.

The following two results are an analogue of [6, Theorem 2.10].
Lemma 1. Assume that N is a weakly 2-absorbing primary submodule of an R-module M that is not 2-absorbing primary. Then $(N: M)^{2} N=0$. In particular, $(N: M)^{3} \subseteq \operatorname{Ann}(M)$.
Proof. Suppose that N is a weakly 2 -absorbing primary submodule of an R module M that is not 2-absorbing primary. Then there is a triple-zero (a, b, m) of N for some $a, b \in R$ and $m \in M$. Assume that $(N: M)^{2} N \neq 0$. Thus there exist $r, s \in(N: M)$ and $n \in N$ with $r s n \neq 0$. By Theorem 1 , we get $(a+r)(b+s)(n+m)=r s n \neq 0$. Then we have $(a+r)(b+s) \in(N: M)$ or $(a+r)(n+m) \in M-\operatorname{rad}(N)$ or $(b+s)(n+m) \in M-\operatorname{rad}(N)$ and so $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, which is a contradiction. Thus we
get $(N: M)^{2} N=0$. We get $(N: M)^{3} \subseteq\left((N: M)^{2} N: M\right)=(0: M)=$ Ann(M).

Proposition 5. Let M be a multiplication R-module and N be a weakly 2absorbing primary submodule of M that is not 2-absorbing primary. Then $N^{3}=0$.

Proof. We have that $(N: M) M=N$ since M is multiplication module. Then $N^{3}=(N: M)^{3} M=(N: M)^{2} N=0$. Consequently, $N^{3}=0$.

Definition 3. Let N be a weakly 2 -absorbing primary submodule of an R module M and let $0 \neq I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of $M . N$ is called free triple-zero in regard to I_{1}, I_{2}, K if (a, b, m) is not a triple-zero of N for every $a \in I_{1}, b \in I_{2}$ and $m \in K$.

The following result and its proof are analogues of [6, Theorem 2.29] and its proof.

Lemma 2. Let N be a weakly 2-absorbing primary submodule of M. Assume that $a b K \subseteq N$ for some $a, b \in R$ and some submodule K of M where (a, b, m) is not a triple-zero of N for every $m \in K$. If $a b \notin(N: M)$, then $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.

Proof. Assume that $a K \nsubseteq M-\operatorname{rad}(N)$ and $b K \nsubseteq M-\operatorname{rad}(N)$. Then there are $x, y \in K$ such that $a x \notin M-\operatorname{rad}(N)$ and $b y \notin M-\operatorname{rad}(N)$. We get $b x \in$ $M-\operatorname{rad}(N)$ since N is a weakly 2 -absorbing primary submodule, (a, b, x) is not a triple-zero of $N, a b \notin(N: M)$ and $a x \notin M-\operatorname{rad}(N)$. In a similar way, $a y \in M-\operatorname{rad}(N)$. Now, we obtain $a(x+y) \in M-\operatorname{rad}(N)$ or $b(x+y) \in M-\operatorname{rad}(N)$ since $(a, b, x+y)$ is not a triple-zero of $N, a b(x+y) \in N$ and $a b \notin(N: M)$. Assume that $a(x+y)=a x+a y \in M-\operatorname{rad}(N)$. As $a y \in M-\operatorname{rad}(N)$, we get $a x \in M-\operatorname{rad}(N)$, which is a contradiction. Assume that $b(x+y)=b x+b y \in$ $M-\operatorname{rad}(N)$. As $b x \in M-\operatorname{rad}(N)$, we get $b y \in M-\operatorname{rad}(N)$, a contradiction again. Hence we obtain that $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.

Let N be a weakly 2 -absorbing primary submodule of an R-module M and $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M where N is free triple-zero in regard to I_{1}, I_{2}, K. Note that if $a \in I_{1}, b \in I_{2}$ and $m \in K$, then $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$.

The following result and its proof are analogues of [6, Theorem 2.30] and its proof.

Theorem 2. Assume that N is a weakly 2-absorbing primary submodule of an R-module M and $0 \neq I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M where N is free triple-zero in regard to I_{1}, I_{2}, K. Then $I_{1} I_{2} \subseteq(N: M)$ or $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$.
Proof. Let N be a weakly 2-absorbing primary submodule of M and $0 \neq$ $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M where
N is free triple-zero in regard to I_{1}, I_{2}, K. Suppose that $I_{1} I_{2} \nsubseteq(N: M)$. Now, we show that $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$. Assume that $I_{1} K \nsubseteq$ $M-\operatorname{rad}(N)$ and $I_{2} K \nsubseteq M-\operatorname{rad}(N)$. Then $x K \nsubseteq M-\operatorname{rad}(N)$ and $y K \nsubseteq M-\operatorname{rad}(N)$ where $x \in I_{1}$ and $y \in I_{2}$. By Lemma 2 , we get $x y \in(N: M)$ since $x y K \subseteq N$, $x K \nsubseteq M-\operatorname{rad}(N)$ and $y K \nsubseteq M-\operatorname{rad}(N)$. By our assumption, there are $a \in I_{1}$ and $b \in I_{2}$ such that $a b \notin(N: M)$. By Lemma 2, we get $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$ as $a b K \subseteq N$ and $a b \notin(N: M)$. We investigate three cases. First case: Assume that $a K \subseteq M-\operatorname{rad}(N)$ and $b K \nsubseteq M-\operatorname{rad}(N)$. Since $x b K \subseteq$ $N, x K \nsubseteq M-\operatorname{rad}(N)$ and $b K \nsubseteq M-\operatorname{rad}(N)$, then we get $x b \in(N: M)$, by Lemma 2. We have $(x+a) K \nsubseteq M-\operatorname{rad}(N)$ as $(x+a) b K \subseteq N, x K \nsubseteq M-\operatorname{rad}(N)$ and $a K \subseteq M-\operatorname{rad}(N)$. Since $b K \nsubseteq M-\operatorname{rad}(N)$ and $(x+a) K \nsubseteq M-\operatorname{rad}(N)$, then we obtain $b(x+a) \in(N: M)$, by Lemma 2. Thus since $b(x+a)=x b+a b \in$ $(N: M)$ and $x b \in(N: M)$, then $a b \in(N: M)$, which is a contradiction. Second case: Assume that $a K \nsubseteq M-\operatorname{rad}(N)$ and $b K \subseteq M-\operatorname{rad}(N)$. It is easily shown similarly to the first case. Third case: Suppose that $a K \subseteq M-\operatorname{rad}(N)$ and $b K \subseteq M-\operatorname{rad}(N)$. Then $(y+b) K \nsubseteq M-\operatorname{rad}(N)$ as $y K \nsubseteq M-\operatorname{rad}(N)$ and $b K \subseteq M-\operatorname{rad}(N)$. By Lemma $2, x(y+b) \in(N: M)$ since $x(y+b) K \subseteq N, x K \nsubseteq M-\operatorname{rad}(N)$ and $(y+b) K \nsubseteq M-\operatorname{rad}(N)$. Then $x b \in(N: M)$ since $x(y+b) \in(N: M)$ and $x y \in(N: M)$. As $a K \subseteq M-\operatorname{rad}(N)$ and $x K \nsubseteq M-\operatorname{rad}(N)$, then $(x+a) K \nsubseteq M-\operatorname{rad}(N)$. As $(x+a) y K \subseteq N$, $y K \nsubseteq M-\operatorname{rad}(N)$ and $(x+a) K \nsubseteq M-\operatorname{rad}(N)$, then $(x+a) y=x y+a y \in(N: M)$ by Lemma 2. As $x y \in(N: M)$ and $a y+x y \in(N: M)$, then $a y \in(N: M)$. By Lemma 2, we get $(x+a)(y+b)=x y+x b+a y+a b \in(N: M)$ since $(x+a)(y+b) K \subseteq N,(x+a) K \nsubseteq M-\operatorname{rad}(N)$ and $(y+b) K \nsubseteq M-\operatorname{rad}(N)$. As $x b, a y, x y \in(N: M)$, then $x y+x b+a y \in(N: M)$. Thus, $a b \in(N: M)$ since $x y+x b+a y+a b \in(N: M)$ and $x y+x b+a y \in(N: M)$, a contradiction. Hence $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$.

Lemma 3. Let N be a weakly 2-absorbing primary submodule of M. If abK \subseteq N and $0 \neq 2 a b K$ for some submodule K of M and for some $a, b \in R$, then $a b \in(N: M)$ or $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.
Proof. Assume that $a b \notin(N: M)$. Now, we show that $K \subseteq(M-\operatorname{rad}(N)$: a) $\cup(M-\operatorname{rad}(N): b)$. Let $x \in K$. If $0 \neq a b x$, then $a x \in M-\operatorname{rad}(N)$ or $b x \in$ $M-\operatorname{rad}(N)$ since $a b \notin(N: M)$. Thus $x \in(M-\operatorname{rad}(N): a) \cup(M-\operatorname{rad}(N): b)$. Suppose that $a b x=0$. As $0 \neq 2 a b K$, there is $y \in K$ such that $2 a b y \neq 0$. Then we get $0 \neq a b y \in N$. So $a y \in M-\operatorname{rad}(N)$ or $b y \in M-\operatorname{rad}(N)$ since N is weakly 2 -absorbing primary. Let $z=x+y$. Then $0 \neq a b z \in N$. Since $a b \notin(N: M)$, then $a z \in M-\operatorname{rad}(N)$ or $b z \in M-\operatorname{rad}(N)$. Now, we consider three cases. First case: Assume that $a y \in M-\operatorname{rad}(N)$ and $b y \notin M-\operatorname{rad}(N)$. Let $a x \notin M-\operatorname{rad}(N)$. Then $a z \notin M-\operatorname{rad}(N)$. Thus $b z \in M-\operatorname{rad}(N)$. So $a(z+x) \notin M-\operatorname{rad}(N)$ and $b(z+x) \notin M-\operatorname{rad}(N)$. Hence $0=a b(z+x)=2 a b z$ since N is a weakly 2-absorbing primary submodule and $a b \notin(N: M)$. This is a contradiction. Consequently, $a x \in M-\operatorname{rad}(N)$. Second case: Assume that $a y \notin M-\operatorname{rad}(N)$ and by $\in M-\operatorname{rad}(N)$. It is proved by a similar way to first case. Third case:

Assume that $a y \in M-\operatorname{rad}(N)$ and $b y \in M-\operatorname{rad}(N)$. Since $a z \in M-\operatorname{rad}(N)$ or $b z \in M-\operatorname{rad}(N), a x \in M-\operatorname{rad}(N)$ or $b x \in M-\operatorname{rad}(N)$.
Lemma 4. Let N be a weakly 2-absorbing primary submodule of an R-module M. If $a J K \subseteq N$ and $0 \neq 4 a J K$ for some submodule K of M, for any ideal J of R and for some $a \in R$, then $a J \subseteq(N: M)$ or $a K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-r a d(N)$.

Proof. Suppose that $a J \nsubseteq(N: M)$. Then there is $j \in J$ such that $a j \notin(N$: $M)$. Our claim is that there is $b \in J$ such that $0 \neq 4 a b K$ and $a b \notin(N: M)$. As $0 \neq 4 a J K$, then there is $j^{\prime} \in J$ such that $0 \neq 4 a j^{\prime} K$. Assume that $a j^{\prime} \notin(N: M)$ and $0 \neq 4 a j K$. Then we have the result for $b=j^{\prime}$ or $b=j$. Now, let $a j^{\prime} \in(N: M)$ and $4 a j K=0$. Then $0 \neq 4 a\left(j+j^{\prime}\right) K \subseteq N$ and $a\left(j+j^{\prime}\right) \notin(N: M)$ since $a j \notin(N: M)$ and $a j^{\prime} \in(N: M)$. Hence we get $b=j+j^{\prime} \in J$ such that $0 \neq 4 a b K \subseteq N$ and $a b \notin(N: M)$. Thus $0 \neq 2 a b K$ and so $K \subseteq(M-\operatorname{rad}(N): a) \cup(M-\operatorname{rad}(N): b)$ by Lemma 3. If $K \subseteq$ $(M-\operatorname{rad}(N): a)$, the proof is completed. Suppose that $K \nsubseteq(M-\operatorname{rad}(N): a)$. Then $K \subseteq(M-\operatorname{rad}(N): b)$, that is, $b K \subseteq M-\operatorname{rad}(N)$. Let $c \in J$. Assume that $0 \neq 2 a c K$. By Lemma 3, ac $\in(N: M)$ or $c K \subseteq M-\operatorname{rad}(N)$ since $K \nsubseteq(M-\operatorname{rad}(N): a)$. Then $c \in((N: M): a) \cup(M-\operatorname{rad}(N): K)$. Now, let $2 a c K=0$. Then $0 \neq 2 a(b+c) K \subseteq N$. By Lemma 3, we have $a(b+c) \in(N: M)$ or $(b+c) K \subseteq M-\operatorname{rad}(N)$ since $K \nsubseteq(M-\operatorname{rad}(N): a)$. Thus we get $b+c \in((N$: $M): a) \cup(M-\operatorname{rad}(N): K)$. If $b+c \in(M-\operatorname{rad}(N): K)$, then $c \in(M-\operatorname{rad}(N):$ $K)$. Hence $J K \subseteq M-\operatorname{rad}(N)$. Let $b+c \in((N: M): a) \backslash(M-\operatorname{rad}(N): K)$. Note that $2 a(b+c+b) K=4 a b K \neq 0$ and $2 a(b+c+b) K \subseteq N$. Since $a b \notin(N: M)$ and $a(b+c) \in(N: M), a(b+c+b) \notin(N: M)$. Thus by Lemma $3, K \subseteq(M-\operatorname{rad}(N): a) \cup(M-\operatorname{rad}(N):(b+c+b))$. As $b+c \notin(M-\operatorname{rad}(N): K)$ and $b \in(M-\operatorname{rad}(N): K)$, then we get $(b+c+b) \notin(M-\operatorname{rad}(N): K)$ and so $K \subseteq(M-\operatorname{rad}(N): a)$, a contradiction. Thus $b+c \in(M-\operatorname{rad}(N): K)$. Since $b \in(M-\operatorname{rad}(N): K), c \in(M-\operatorname{rad}(N): K)$. Hence $J \subseteq((N: M): a) \cup$ $(M-\operatorname{rad}(N): K)$. Consequently $J \subseteq(M-\operatorname{rad}(N): K)$ since $a J \nsubseteq(N: M)$.
Theorem 3. Let I_{1}, I_{2} be ideals of R and N, K be submodules of an R-module M. Assume that N is a weakly 2 -absorbing primary submodule. If $0 \neq I_{1} I_{2} K$ and $0 \neq 8\left(I_{1} I_{2}+\left(I_{1}+I_{2}\right)(N: K)\right)(K+N)$, then $I_{1} I_{2} \subseteq(N: M)$ or $I_{1} K \subseteq$ $M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$.

Proof. It is clear from Lemma 4 and [12, Theorem 2.3].
Theorem 4. Let M be a finitely generated multiplication R-module whose every proper submodule is weakly 2-absorbing primary. Then there exist at most three maximal ideals of R containing Ann (M).

Proof. Assume that R has four maximal ideals $\Im_{1}, \Im_{2}, \Im_{3}$ and \Im_{4} containing $\operatorname{Ann}(M)$. Let $K=\Im_{1} \cap \Im_{2} \cap \Im_{3}$ and $N=K M$. Note that $\Im_{i} M \neq M$ for every index i. Indeed, if $\Im_{i} M=M$ for some index i, then there is an element $r \in \Im_{i}$ such that $r-1 \in \operatorname{Ann}(M) \subseteq \Im_{i}$, contradiction. It is easily seen that
$\Im_{i}=\left(\Im_{i} M: M\right)$ as $\Im_{i} \subseteq\left(\Im_{i} M: M\right)$. We get $K \subseteq(N: M) \subseteq \bigcap_{i=1}^{3}\left(\Im_{i} M:\right.$ $M)=K$. Thus $\sqrt{(N: M)}=\sqrt{K}=\sqrt{\Im_{1}} \cap \sqrt{\Im_{2}} \cap \sqrt{\Im_{3}}$. Hence we get that $(N: M)$ is not a 2 -absorbing primary ideal by [13, Corollary 2.7]. Then N is not a 2 -absorbing primary submodule by [14, Theorem 2.6]. By Lemma 1, $(N: M)^{3} \subseteq \operatorname{Ann}(M) \subseteq \Im_{4}$. Then $\Im_{i}=\Im_{4}$ for $i \in\{1,2,3\}$, a contradiction. Therefore, there are at most three maximal ideals of R containing $\operatorname{Ann}(M)$.

Corollary 1. Let M be a finitely generated multiplication R-module whose every proper submodule is weakly 2-absorbing primary. Then $(J(R))^{3} M=0$.
Proof. We have that $K^{3} \subseteq \operatorname{Ann}(M)$ by the proof of Theorem 4. Thus we obtain $(J(R))^{3} M=0$.

Let M be a multiplication R-module and K, L be R-submodules of M. Then there exist ideals I and J of R such that $K=I M$ and $L=J M$. Hence $K L=I J M=I L$ and $K L=I J M=K J$. In particular, we obtain that $K M=I M=K, L M=J M=L$ and $K m=K R m$ for every $m \in M$. Therefore, $K m=I R m=I m$.

Lemma 5. Let M be a multiplication R-module. If ($N: M$) is a weakly primary ideal of R, then N is a weakly primary submodule of M.
Proof. Assume that $0 \neq a m \in N$ for some $a \in R$ and $m \in M$ with $a \notin$ $\sqrt{(N: M)}$. Since M is multiplication, there exists an ideal I of R such that $m=R m=I M$, then $0 \neq R a I M \subseteq N$. Since $(N: M)$ is weakly primary and $a \notin \sqrt{(N: M)}$, we have $((N: M): R a)=(N: M)$ or $((N: M)$: $R a)=(0: R a)$, by [1, Proposition 2.1]. We claim that $R a \subseteq(N: M)$ or $I M \subseteq N$. Suppose that $R a \nsubseteq(N: M)$. Then since $0 \neq R a I M$, we get that $I \subseteq(N: R a M)=((N: M): R a)=(N: M)$. Hence $I M \subseteq N$ and so $m \in N$, as needed.

Corollary 2. Let M be a finitely generated multiplication R-module. Suppose that every proper ideal of R is weakly primary such that not primary ideal. Then $(J(R))^{3} M=0$.

Proof. Assume that $(N: M)$ is a proper weakly primary ideal of R. Thus $(N: M) M=N$ is a weakly 2 -absorbing primary submodule. By Corollary 1 , we get $(J(R))^{3} M=0$.

The following result is an analogue of [6, Theorem 2.21].
Lemma 6. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where $0 \neq M_{1}$ is a multiplication R_{1}-module and $0 \neq M_{2}$ is a multiplication R_{2}-module. Then the followings hold:
(1) The following statements are equivalent:
i. $N_{1} \times M_{2}$ is a weakly 2-absorbing primary submodule of $M_{1} \times M_{2}$;
ii. $N_{1} \times M_{2}$ is a 2-absorbing primary submodule of $M_{1} \times M_{2}$;
iii. N_{1} is a 2-absorbing primary submodule of M_{1}.
(2) The following statements are equivalent:
i. $M_{1} \times N_{2}$ is a weakly 2 -absorbing primary submodule of $M_{1} \times M_{2}$;
ii. $M_{1} \times N_{2}$ is a 2-absorbing primary submodule of $M_{1} \times M_{2}$;
iii. N_{2} is a 2-absorbing primary submodule of M_{2}.

Proof. (1) (i) \Rightarrow (ii): Assume that $N_{1} \times M_{2}$ is not a 2-absorbing primary submodule of $M_{1} \times M_{2}$. By Lemma $1,(0,0)=\left(\left(N_{1} \times M_{2}\right):\left(M_{1} \times M_{2}\right)\right)^{2}\left(N_{1} \times M_{2}\right)=$ $\left(\left(N_{1}: M_{1}\right) \times\left(M_{1}: M_{2}\right)\right)^{2}\left(N_{1} \times M_{2}\right)=\left(N_{1}: M_{1}\right)^{2} N_{1} \times M_{2}$. Then $M_{2}=0$ a contradiction.
(ii) \Rightarrow (i): Is obvious.
(ii) \Rightarrow (iii): It is clear.
(2) The other part of the lemma can be seen in a similar way to the proof of the first part.
Lemma 7. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where $0 \neq M_{1}$ is a multiplication R_{1}-module and $0 \neq M_{2}$ is a multiplication R_{2}-module. If $N_{1} \times N_{2}$ is a weakly 2-absorbing primary submodule of $M, N_{1} \neq M_{1}, N_{2} \neq 0$ and $N_{2} \neq M_{2}$, then N_{1} is a weakly 2-absorbing primary submodule of M_{1}.
Proof. Assume that $N_{1} \neq M_{1}, N_{2} \neq 0$ and $N_{2} \neq M_{2}$. Let $a_{1}, b_{1} \in R_{1}$ and $x_{1} \in M_{1}$ where $a_{1} b_{1} x_{1} \in N_{1}$ and let $0 \neq x_{2} \in N_{2}$. Then $(0,0) \neq$ $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(x_{1}, x_{2}\right) \in N_{1} \times N_{2}$. Since $N_{1} \times N_{2}$ is a weakly 2-absorbing primary submodule, then $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in\left(\left(N_{1} \times N_{2}\right): M\right)$ or $\left(a_{1}, 1\right)\left(x_{1}, x_{2}\right) \in$ $M-\operatorname{rad}\left(N_{1} \times N_{2}\right)=M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$ or $\left(b_{1}, 1\right)\left(x_{1}, x_{2}\right) \in M-\operatorname{rad}\left(N_{1} \times\right.$ $\left.N_{2}\right)=M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$. As $1 \notin\left(N_{2}: M_{2}\right)$, then we get $\left(a_{1}, 1\right)\left(x_{1}, x_{2}\right)$ $\in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$ or $\left(b_{1}, 1\right)\left(x_{1}, x_{2}\right) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$. Thus $a_{1} x_{1} \in M_{1}-\operatorname{rad}\left(N_{1}\right)$ or $b_{1} x_{1} \in M_{1}-\operatorname{rad}\left(N_{1}\right)$. The proof is completed.

By [15], it is said that a commutative ring R is a u-ring if an ideal of R contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.
Theorem 5. Let N be a weakly 2-absorbing primary submodule of M. Then the following statements hold:
(1) If $a b \notin(N: M)$ for some $a, b \in R$, then $(N: a b) \subseteq(M-\operatorname{rad}(N)$: $a) \cup(M-\operatorname{rad}(N): b) \cup(0: a b)$.
(2) Let R be a um-ring. If $a b \notin(N: M)$ for some $a, b \in R$, then $(N: a b) \subseteq$ $(M-r a d(N): a)$ or $(N: a b) \subseteq(M-r a d(N): b)$ or $(N: a b)=(0: a b)$.
Proof. Assume that N is a weakly 2 -absorbing primary submodule of M.
(1) Let $m \in(N: a b)$. Assume that $a b m \neq 0$. Then $a b m \in N$ and thus $a m \in$ $M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ since $a b \notin(N: M)$. Hence $m \in(M-\operatorname{rad}(N): a)$ or $m \in(M-\operatorname{rad}(N): b)$. Therefore, $m \in(M-\operatorname{rad}(N): a) \cup(M-\operatorname{rad}(N): b)$. Assume that $a b m=0$. Then $m \in(0: a b)$. Consequently, $m \in(M-\operatorname{rad}(N):$ a) $\cup(M-\operatorname{rad}(N): b) \cup(0: a b)$.
(2) Assume that R is a um-ring. It is easily obtained by part (1).

Theorem 6. Let N be a weakly 2-absorbing primary submodule of M. Then the following statements hold:
(1) If abm $\notin N$ for some $a, b \in R$ and $m \in M$, then $(N: a b m) \subseteq$ $(M-\operatorname{rad}(N): a m) \cup(M-\operatorname{rad}(N): b m) \cup(0: a b m)$.
(2) Let R be a u-ring. If abm $\notin N$ for some $a, b \in R$ and $m \in M$, then $(N: a b m) \subseteq(M-r a d(N): a m)$ or $(N: a b m) \subseteq(M-\operatorname{rad}(N): b m)$ or $(N: a b m)=(0: a b m)$.

Proof. Assume that N is a weakly 2-absorbing primary submodule of M.
(1) Let $r \in(N: a b m)$. Assume that $r a b m \neq 0$. Then rabm $\in N$ and thus ram $\in M-\operatorname{rad}(N)$ or $r b m \in M-\operatorname{rad}(N)$ since $a b \notin(N: M)$. Hence $r \in$ $(M-\operatorname{rad}(N): a m)$ or $r \in(M-\operatorname{rad}(N): b m)$. Therefore, $r \in(M-\operatorname{rad}(N): a m) \cup$ $(M-\operatorname{rad}(N): b m)$. Assume that $r a b m=0$. Then $r \in(0: a b m)$. Consequently, $r \in(M-\operatorname{rad}(N): a m) \cup(M-\operatorname{rad}(N): b m) \cup(0: a b m)$.
(2) Assume that R is a u-ring. The result is easily seen by part (1).

Proposition 6. Let M be a faithful multiplication R-module and N be a submodule of M. If N is a weakly 2-absorbing primary submodule but it is not 2 -absorbing primary, then $N \subseteq M-\operatorname{rad}(0)$. In addition $M-\operatorname{rad}(N)=M-\operatorname{rad}(0)$.

Proof. By Lemma $1,(N: M)^{3} \subseteq \operatorname{Ann}(M)$. Since M is a faithful module, $(N$: $M)^{3}=0$. Now suppose that $a \in(N: M)$. Then $a^{3}=0$ and so $a \in \sqrt{0}$. Hence $(N: M) \subseteq \sqrt{0}$ and thus $N=(N: M) M \subseteq M-\operatorname{rad}(0)$. In addition, by Lemma $1,(N: M)^{2} N=0$. Then $(N: M)^{3}=(N: M)^{2}(N: M) \subseteq\left((N: M)^{2} N:\right.$ $M)=\operatorname{Ann}(M)$ and so $(N: M) \subseteq \sqrt{\operatorname{Ann(M)}}$. Thus $\sqrt{(N: M)}=\sqrt{\operatorname{Ann(M)}}$. Hence $M-\operatorname{rad}(N)=\sqrt{(N: M)} M=\sqrt{\operatorname{Ann(M)}} M=M-\operatorname{rad}(0)$.

Theorem 7. Let M be an R-module and N be a submodule of M. Suppose that $M-\operatorname{rad}(0)$ is a prime submodule. Then N is a weakly 2 -absorbing primary submodule if and only if N is a 2-absorbing primary submodule.

Proof. Assume that N is weakly 2 -absorbing primary. Suppose that $a b m \in N$ for some $a, b \in R$ and $m \in M$. If $0 \neq a b m \in N$, then either $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$. If $a b m=0$, we may suppose that $a b \notin(N: M)$. Since that $M-\operatorname{rad}(0)$ is a prime submodule, we can conclude that $a \in\left(M-\operatorname{rad}(0):_{R} M\right)$ or $b m \in M-\operatorname{rad}(0)$. Since $M-\operatorname{rad}(0) \subseteq M-\operatorname{rad}(N)$, we obtain that $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$. Therefore N is 2 -absorbing primary. The converse is obviously.

Theorem 8. Let M be a multiplication R-module and N be a submodule of M. Suppose that M is a P-primary module. If N is a weakly 2-absorbing primary submodule, then $(N: M)$ is a weakly 2-absorbing primary ideal.

Proof. Assume that $0 \neq a b c \in(N: M)$ for some $a, b, c \in R$ with $a b \notin(N: M)$. Then $a b c m \in N$ for each $m \in M$. If $a b c m=0$, then $a b c \in\left(0:_{R} M\right)=P$.

Since M is a P-primary module, we conclude that $c^{n} \in P \subseteq(N: M)$ for some positive integer n. Thus $a c \in \sqrt{(N: M)}$, as needed. Suppose that $0 \neq a b c m \in N$. Since N is weakly 2 -absorbing primary, we can conclude that $a c m \in M-\operatorname{rad}(N)$ (so $a c \in((M-\operatorname{rad}(N): M))$ or $b c m \in M-\operatorname{rad}(N)$ (so $b c \in((M-\operatorname{rad}(N): M))$. Hence $a c \in \sqrt{(N: M)}$ or $b c \in \sqrt{(N: M)}$. Therefore ($N: M$) is a weakly 2 -absorbing primary ideal.

Theorem 9. Let M be a multiplication R-module and N be a submodule of M. Suppose that M is a P-primary module. If N is a weakly 2-absorbing primary submodule, then $\sqrt{(N: M)}$ is a weakly 2-absorbing ideal.

Proof. Assume that $0 \neq a b c \in \sqrt{(N: M)}$ with $a b \notin \sqrt{(N: M)}$ for some $a, b, c \in R$. Then $(a b c)^{n} m \in N$ for some positive integer n and every $m \in M$. If $(a b c)^{n} m=0$ since M is a P-primary module, then $a b c \in\left(0:_{R} m\right)=\left(0:_{R} M\right)=$ $P \subseteq(N: M)$. Hence $a c \in \sqrt{(N: M)}$, as needed. Suppose that $0 \neq(a b c)^{n} m=$ $a^{n} b^{n}\left(c^{n} m\right) \in N$. Since N is a weakly 2 -absorbing primary submodule and $a b \notin$ $\sqrt{(N: M)}$, we conclude that $a^{n}\left(c^{n} m\right) \in M-\operatorname{rad}(N)$ (so $a^{n} c^{n} \in(M-\operatorname{rad}(N)$: $M)$) or $b^{n}\left(c^{n} m\right) \in M-\operatorname{rad}(N)\left(\right.$ so $\left.b^{n} c^{n} \in(M-\operatorname{rad}(N): M)\right)$. Since $(M-\operatorname{rad}(N)$: $M)=\sqrt{(N: M)}$, we can conclude that $a c \in \sqrt{(N: M)}$ or $b c \in \sqrt{(N: M)}$. Therefore $\sqrt{(N: M)}$ is a weakly 2-absorbing ideal.

Theorem 10. Let M be an R-module and N be a submodule of M. If N is a weakly 2-absorbing submodule, then $(N: m)$ is a weakly 2-absorbing ideal for every $m \in M \backslash N$ with $\operatorname{Ann}(m)=0$.

Proof. Assume that $0 \neq a b c \in(N: m)$ for some $a, b, c \in R$. Then $a b c m \in N$. If $a b c m=0$, then $a b c \in(0: R m)=0$ and we are done. Suppose that $0 \neq a b c m \in N$. Since N is a weakly 2 -absorbing submodule, we conclude that $a b \in\left(N:_{R} M\right)($ so $a b \in(N: m))$ or $b c m \in N($ so $b c \in(N: m))$ or $a c m \in N$ (so $a c \in(N: m)$). Therefore $(N: m)$ is a weakly 2 -absorbing ideal for every $m \in M \backslash N$.

We invite the reader to compare the following two results with $[6$, Theorem 2.23].

Theorem 11. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ be a finitely generated multiplication R-module where M_{1} and M_{2} are multiplication R_{1}-module and R_{2}-module, respectively. If $N=N_{1} \times N_{2}$ is a weakly 2-absorbing primary submodule, then $N=0$ or N is 2-absorbing primary.

Proof. Assume that $0 \neq N=N_{1} \times N_{2}$ and show that N is a 2 -absorbing primary submodule. Without loss of generality we may suppose that $N_{2} \neq 0$. Then there exists a nonzero element $y \in N_{2}$. Suppose that $a \in\left(N_{1}: M_{1}\right)$ and $x \in M_{1}$. Then $0 \neq(a, 1)(1,1)(x, y) \in N=N_{1} \times N_{2}$. Since N is a weakly 2-absorbing primary submodule, we conclude that $(a, 1)(1,1) \in\left(N_{1} \times N_{2}: M\right)$ or $(a, 1)(x, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$ or $(1,1)(x, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times$
$M_{2}-\operatorname{rad}\left(N_{2}\right)$. Then $1 \in\left(N_{2}: M_{2}\right)$ or $a x \in M_{1}-\operatorname{rad}\left(N_{1}\right)$ or $y \in M_{2}-\operatorname{rad}\left(N_{2}\right)$. Suppose that $1 \in\left(N_{2}: M_{2}\right)$. If $N_{1}=0$, then $0 \times M_{2} \subseteq N$ and so we may assume that $N=N_{1} \times M_{2}$. Let $a x \in M_{1}-\operatorname{rad}\left(N_{1}\right)$. Here we will have two cases; if $x \in N_{1}$, then since $N_{2} \neq 0$, we can assume that $0 \times M_{2} \subseteq N$ and so $N_{1} \times M_{2}=N$. If $x \notin N_{1}\left(x \in M_{1} \backslash N_{1}\right)$, then since $N_{1} \neq M_{1}$ and $N_{2} \neq 0$, we may suppose that $N=N_{1} \times M_{2}$. Then we show that if $N=N_{1} \times M_{2}$, then N_{1} is 2-absorbing primary and if $N=M_{1} \times N_{2}$, then N_{2} is 2-absorbing primary. For beginning we assume that $N=N_{1} \times M_{2}$ and show that N_{1} is 2-absorbing primary. Let $r s m \in N_{1}$ for some $r, s \in R_{1}$ and $m \in M_{1}$. Then $(0,0) \neq(r, 1)(s, 1)(m, y) \in N_{1} \times M_{2}$. Thus either $(r, 1)(s, 1) \in\left(N_{1} \times N_{2}:_{R} M\right)$ or $(r, 1)(m, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(M_{2}\right)$ or $(s, 1)(m, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times$ $M_{2}-\operatorname{rad}\left(M_{2}\right)$ and so either $r s \in N_{1}$ or $r m \in M_{1}-\operatorname{rad}\left(N_{1}\right)$ or $s m \in M_{1}-\operatorname{rad}\left(N_{1}\right)$. Therefore $N=N_{1} \times N_{2}$ is a 2-absorbing primary submodule, by Lemma 6. By similar way we can show that N_{2} is a 2 -absorbing primary submodule and so $N=M_{1} \times N_{2}$ is 2-absorbing primary, by Lemma 6 . Now we show that N_{1} and N_{2} are primary submodules. Assume that $N_{2} \neq M_{2}$. Let $t \in R_{1}$ and $n \in M_{1}$ such that $t n \in N_{1}$ with $0 \neq n^{\prime} \in N_{2}$. Then $(0,0) \neq(t, 1)(1,1)\left(n, n^{\prime}\right) \in N_{1} \times N_{2}$. Since $N_{1} \times N_{2}$ is a weakly 2-absorbing primary submodule, we conclude that $(t, 1)(1,1) \in\left(N_{1} \times N_{2}:_{R} M\right)$ or $(t, 1)\left(n, n^{\prime}\right) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$ or $(1,1)\left(n, n^{\prime}\right) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$. But $1 \notin\left(N_{2}: M_{2}\right)$. Then $t n \in$ $M_{1}-\operatorname{rad}\left(N_{1}\right)$ and so N_{1} is primary. Similarly we can show that N_{2} is a primary submodule. Therefore N is a 2 -absorbing primary submodule, by [14, Theorem 2.28].

Theorem 12. Let M_{1} and M_{2} be multiplication modules. Suppose that $N_{1} \neq$ M_{1} and $M_{2} \neq 0$. The submodule $N_{1} \times 0$ is a weakly 2-absorbing primary submodule if one of the following statements hold:
(1) N_{1} is a weakly primary submodule of M_{1} and 0 is a primary submodule of M_{2} and $M_{1}-\operatorname{rad}\left(N_{1}\right) \neq 0$;
(2) N_{1} is a weakly primary submodule of M_{1} and 0 is a primary submodule of M_{2} and $M_{1}-\operatorname{rad}\left(N_{1}\right)=0$;
(3) $N_{1}=0$.

Proof. Assume that $(0,0) \neq(a, b)(c, d)(x, y) \in N_{1} \times 0$ with $(a, b)(c, d) \notin$ $\left(N_{1} \times 0: M\right)$. Then $0 \neq a c x \in N_{1}$ and $b d y=0$. Since N_{1} is weakly primary, we have $a \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $c x \in N_{1}$. Since 0 is a primary submodule, we get that $b \in \sqrt{\left(0: M_{2}\right)}$ or $d y=0$. Then $a x \in M_{1}-\operatorname{rad}\left(N_{1}\right)$ or $c x \in M_{1}-\operatorname{rad}\left(N_{1}\right)$ and $b y \in M_{2}-\operatorname{rad}(0)$ or $d y \in M_{2}-\operatorname{rad}(0)$. Hence $(a, b)(x, y) \in$ $M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}(0)$ or $(c, d)(x, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}(0)$, as needed. Now suppose that (2) holds. Then since N_{1} is weakly primary and $0 \neq a c x \in$ N_{1}, we get that $a \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $c x \in N_{1}$. If $a \in \sqrt{\left(N_{1}: M_{1}\right)}$, then $a x \in M_{1}-\operatorname{rad}\left(N_{1}\right)=0$. Thus as $c x \in M_{1}-\operatorname{rad}\left(N_{1}\right)=0$, acx $=0$ which is a contradiction. Then neither $(a, b)(x, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}(0)$ nor
$(c, d)(x, y) \in M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}(0)$. Therefore $N_{1} \times 0$ is weakly 2-absorbing primary. The latest statement is obviously.
Example 1. Suppose that $M=\mathbb{Z} \times \mathbb{Z}$ is an $R=\mathbb{Z} \times \mathbb{Z}$-module and $N=$ $p \mathbb{Z} \times\{0\}$ is a submodule of M where $p \mathbb{Z}$ is a weakly primary submodule and $\{0\}$ is weakly primary. Then $\mathbb{Z}-\operatorname{rad}(p \mathbb{Z})=p \mathbb{Z}$ and $(N: M)=0$. Assume that $(0,0) \neq(p, 1)(1,0)(1,1) \in \mathbb{Z} \times\{0\}$. Then neither $(p, 1)(1,0) \in(N: M)$ nor $(p, 1)(1,1) \in M-\operatorname{rad}(N)$ nor $(1,0)(1,1) \in M-\operatorname{rad}(N)$. Hence N is not weakly 2-absorbing primary. Notice that M is not a multiplication module.
Proposition 7. Let M be a multiplication R-module and N_{1}, \ldots, N_{n} be weakly 2 -absorbing primary submodules with $M-\operatorname{rad}\left(N_{i}\right)=P$ where P is a prime submodule. Then $N=\bigcap_{i=1}^{n} N_{i}$ is weakly 2-absorbing primary.
Proof. Assume that $0 \neq a b m \in N$ for some $a, b \in R$ and $m \in M$ with $a b \notin(N$: $M)$. By [5, Propositin 2.14], $M-\operatorname{rad}(N)=\bigcap_{i=1}^{n} M-\operatorname{rad}\left(N_{i}\right)$. Then $a b \notin\left(N_{i}:\right.$ M) for some $1 \leq i \leq n$. Since N_{i} is a weakly 2 -absorbing primary submodule, $a m \in M-\operatorname{rad}\left(N_{i}\right)=P$ or $b m \in M-\operatorname{rad}\left(N_{i}\right)=P$. Hence $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, as needed.
Definition 4. Let N be a weakly 2 -absorbing primary submodule of an R $\operatorname{module} M$ and $M-\operatorname{rad}(N)=P$, by Proposition 7 . We say that N is a P-weakly 2-absorbing primary submodule.

Let R be a ring with identity and M be an R-module. Then $R(M)=$ $R(+) M$ with multiplication $(a, m)(b, n)=(a b, a n+b m)$ and with addition $(a, m)+(b, n)=(a+b, m+n)$ is a commutative ring with identity and $0(+) M$ is a nilpotent ideal of index 2 . The ring $R(+) M$ is said to be the idealization of M or trivial extension of R by M. We view R as a subring of $R(+) M$ via $r \rightarrow(r, 0)$. An ideal H is said to be homogeneous if $H=I(+) N$ for some ideal I of R and some submodule N of M; whence $I M \subseteq N$, [9] and [11, Sec, 25]. Let R_{1} and R_{2} be commutative rings, M_{1} and M_{2} be R-modules. Then $\left(R_{1} \times R_{2}\right)(+)\left(M_{1} \times M_{2}\right) \approx\left(R_{1}(+) M_{1}\right) \times\left(R_{2}(+) M_{2}\right)$, by [9, Theorem 4.4]. Now we use it to characterize one of the result of weakly 2 -absorbing primary ideals by the idealization method.

Proposition 8. Let R_{1} and R_{2} be commutative rings, M_{1} be R_{1}-module and M_{2} be R-module, respectively. Suppose that $H=I(+) M_{1}$ is an ideal of $R_{1}\left(M_{1}\right)=R_{1}(+) M_{1}$ and $J=h(+) M_{2}$ is an ideal of $R_{2}\left(M_{2}\right)=R_{2}(+) M_{2}$. Then the following statement are equivalent:
(1) $H \times R_{2}\left(M_{2}\right)$ is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_{1}\left(M_{1}\right) \times R_{2}\left(M_{2}\right)$;
i. $R_{1}\left(M_{1}\right) \times J$ is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_{1}\left(M_{1}\right) \times R_{2}\left(M_{2}\right)$;
(2) H is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_{1}\left(M_{1}\right)$;
ii. J is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_{2}\left(M_{2}\right) ;$

Proof. (1) \Rightarrow (2) Assume that $(a, x)(b, y)(c, z) \in H=I(+) M_{1}$ for some $a, b, c \in R$ and $x, y, z \in M_{1}$. Thus $a b c \in I$. Since $H \times R_{2}\left(M_{2}\right)=\left(I(+) M_{1}\right) \times$ $\left(R_{2}(+) M_{2}\right)=\left(I_{1} \times R_{2}\right)(+)\left(M_{1} \times M_{2}\right)$ is a 2 -absorbing primary ideal, $H=$ $I(+) M_{1}$ is 2-absorbing primary and hence I is a 2 -absorbing primary ideal of R_{1}, by [6, Theorem 2.21]. Then $a b \in I$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. Therefore $(a, x)(b, y) \in I(+) M_{1}$ or $(b, y)(c, z) \in \sqrt{I(+) M_{1}}=\sqrt{I}(+) M_{1}$ or $(a, x)(c, z) \in$ $\sqrt{I(+) M_{1}}=\sqrt{I}(+) M_{1}$, as needed.
$(2) \Rightarrow(1)$ Let H be 2-absorbing primary. Assume that $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\left(u_{3}, v_{3}\right)$ $\in H \times R_{2}\left(M_{2}\right)$ such that $u_{1}, u_{2}, u_{3} \in H$ and $v_{1}, v_{2}, v_{3} \in R_{2}\left(M_{2}\right)$. Then $u_{1} u_{2} u_{3} \in H=I(+) M_{1}$ where $u_{1}=(a, x), u_{2}=(b, y)$ and $u_{3}=(c, z)$. Since H is a 2 -absorbing primary ideal, I is 2 -absorbing primary, by [6 , Theorem 2.21]. Then $a b \in I$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. Hence $(a, x)(b, y)=u_{1} u_{2} \in$ $I(+) M_{1}$ or $(b, y)(c, z)=u_{2} u_{3} \in \sqrt{I(+) M_{1}}=\sqrt{I}(+) M_{1}$ or $(a, x)(c, z)=$ $u_{1} u_{3} \in \sqrt{I(+) M_{1}}=\sqrt{I}(+) M_{1}$. Therefore $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in H \times R_{2}\left(M_{2}\right)$ or $\left(u_{2}, v_{2}\right)\left(u_{3}, v_{3}\right) \in \sqrt{H \times R_{2}\left(M_{2}\right)}=\left(\sqrt{I}(+) M_{1}\right) \times\left(R_{2}(+) M_{2}\right)$ or $\left(u_{1}, v_{1}\right)\left(u_{3}, v_{3}\right)$ $\in \sqrt{H \times R_{2}\left(M_{2}\right)}=\left(\sqrt{I}(+) M_{1}\right) \times\left(R_{2}(+) M_{2}\right)$. Then $H \times R_{2}\left(M_{2}\right)$ is a $2-$ absorbing primary ideal of $R_{1}\left(M_{1}\right) \times R_{2}\left(M_{2}\right)$.

The proof of (i) if and only if (ii) is clear by similar arguments as previously shown, and hence we omit the proof.

References

[1] S. E. Atani and F. Farzalipour, On weakly primary ideal, Georgian Math. J. 12 (2005), no. 3, 423-429.
[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc. 75 (2007), no. 3, 417-429.
[3] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. to appear.
[4] A. Badawi, U. Tekir, E. Ugurlu, G. Ulucak, and E. Yetkin, Generalizations of 2absorbing primary ideals of commutative rings, Turk. J. Math. 40 (2016), no. 3, 703-717.
[5] A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173.
[6] _ On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97-111.
[7] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011), no. 3, 577-584.
[8] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[9] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56.
[10] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[11] J. A. Huckaba, Commutative Rings with Zero-Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., Now York, 1988.
[12] S. Moradi and A. Azizi, Weakly 2-absorbing submodules of modules, Turk. J. Math. 40 (2016), no. 2, 350-364.
[13] H. Mostafanasab and A. Y. Darani, On ϕ - n-absorbing primary ideals in commutative rings, arXiv:1503.00108v1(2015).
[14] H. Mostafanasab, E. Yetkin, U. Tekir, and A. Y. Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Şt. Univ. Ovidius Constanţa 24 (2016), no. 1, 335-351.
[15] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91-96.

Ahmad Yousefian Darani
Department of Mathematics
Faculty of Science
University of Mohaghegh Ardabili
P.O. Box 179, Ardebil, Iran

E-mail address: yousefian@uma.ac.ir, youseffian@gmail.com
Fatemeh Soheilnia
Department of Mathematics
Faculty of Science
University of Mohaghegh Ardabili
P.O. Box 179, Ardebil, Iran

E-mail address: soheilnia@gmail.com
Unsal Tekir
Department of Mathematics
Marmara University
Ziverbey, 34722, Goztepe, Istanbul, Turkey
E-mail address: utekir@marmara.edu.tr
Gulsen Ulucak
Department of Mathematics
Gebze Technical University
P.K 41400, Gebze-Kocaeli, Turkey

E-mail address: gulsenulucak@gtu.edu.tr

[^0]: Received August 16, 2016; Revised December 6, 2016; Accepted March 7, 2017.
 2010 Mathematics Subject Classification. 13C99, 13C13.
 Key words and phrases. 2-absorbing submodule, 2-absorbing primary submodule, weakly 2-absorbing primary submodule.

