ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

AHMAD YOUSEFIAN DARANI, FATEMEH SOHEILNIA, UNSAL TEKIR, AND GULSEN ULUCAK

ABSTRACT. Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2-absorbing primary submodule of M if $0 \neq abm \in N$ for any $a,b \in R$ and $m \in M$, then $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N). In this paper, we extended the concept of weakly 2-absorbing primary ideals of commutative rings to weakly 2-absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2-absorbing primary submodule of M and it satisfies certain condition $0 \neq I_1I_2K \subseteq N$ for some ideals I_1, I_2 of R and submodule K of M, then $I_1I_2 \subseteq (N:M)$ or $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N).

1. Introduction

Throughout this paper, we suppose that all rings are commutative with $1 \neq 0$. Let M be an R-module. A submodule N of M is called a proper submodule if $N \neq M$. Let N be a proper submodule of M. (N:M) is the set of all $r \in R$ such that $rM \subseteq N$ for any submodule N of M. Then the radical of N, denoted by M-rad(N), is defined as the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then M-rad(N) = M.

Following the concept of 2-absorbing ideals of commutative rings as in [2] and [10] and the concept of weakly prime ideals of commutative rings as in [8], Badawi and Darani introduced the concept of weakly 2-absorbing ideals in commutative rings as in [3]. Afterwards, in [5], Badawi, Tekir and Yetkin introduced the concept of 2-absorbing primary ideals as a generalization of primary ideals. Also, the concept of weakly 2-absorbing primary ideals, which is a generalization of weakly primary as in [1], was studied extensively by Badawi, Tekir and Yetkin, see [6]. A proper ideal I of R is called 2-absorbing (weakly 2-absorbing) primary ideal if $abc \in I$ ($0 \neq abc \in I$) for any $a, b, c \in R$,

Received August 16, 2016; Revised December 6, 2016; Accepted March 7, 2017. 2010 Mathematics Subject Classification. 13C99, 13C13.

Key words and phrases. 2-absorbing submodule, 2-absorbing primary submodule, weakly 2-absorbing primary submodule.

then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. Recently, Mostafanasab and Darani generalized the concept of ϕ -2-absorbing primary ideals of commutative rings as in [4] to ϕ -n-absorbing primary ideals in commutative rings, see [13].

The concept of 2-absorbing submodule and weakly 2-absorbing submodules, generalizations of prime submodules and weakly prime submodules, respectively, were studied inclusively by Moradi, Azizi and other authours, see for example, [7]-[12]. A proper submodule N of M is called 2-absorbing (weakly 2-absorbing) submodule if $abm \in N$ ($0 \neq abm \in N$) for some $a, b \in R$ and $m \in M$, then $ab \in (N : M)$ or $am \in N$ or $bm \in N$. For general informations of ideals and submodules, we refer the reader to [9] and [15].

In this study, we investigate weakly 2-absorbing primary submodules. Recall that a proper submodule N of M is said to be 2-absorbing (weakly 2-absorbing) primary submodule of M if $abm \in N$ ($0 \neq abm \in N$) for any $a, b \in R$ and $m \in M$, then $ab \in (N : M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N).

Our main aim is to answer the question: If N is a weakly 2-absorbing primary submodule of an R-module M and $0 \neq I_1I_2K \subseteq N$ for some ideals I_1, I_2 of R and some submodule K of M, does it follow that $I_1I_2 \subseteq (N:M)$ or $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N)? (see, Theorem 2 and Theorem 3). Among some results of this paper, it is shown that (Theorem 7) if M-rad(0) is a prime submodule, then N is a weakly 2-absorbing primary submodule if and only if N is a 2-absorbing primary submodule. In Theorem 8 (Theorem 9), it is seen that if N is a weakly 2-absorbing primary submodule, then (N:M) is a weakly 2-absorbing primary submodule, then (N:M) is a weakly 2-absorbing primary ideal). In Theorem 11, it is obtained that if $N = N_1 \times N_2$ is a weakly 2-absorbing primary submodule, then N = 0 or N is 2-absorbing primary.

2. On weakly 2-absorbing primary submodules

Definition 1. A proper submodule N of an R-module M is called a weakly 2-absorbing primary submodule of M if $0 \neq abm \in N$ for any $a, b \in R$ and $m \in M$, then $ab \in (N : M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N).

Proposition 1. Let N be a weakly 2-absorbing primary submodule of an R-module M. Assume that K is a submodule of M with $N \subsetneq K$. Then N is a weakly 2-absorbing primary submodule of K.

Proof. Let $a, b \in R$ and $k \in K$ with $0 \neq abk \in N$. Then $ab \in (N : M)$ or $ak \in M$ -rad(N) or $bk \in M$ -rad(N) as N is a weakly 2-absorbing primary. Thus $ab \in (N : K)$ or $ak \in K$ -rad(N) or $bk \in K$ -rad(N) since $(N : M) \subseteq (N : K)$.

The following result is an analogue of [6, Theorem 2.18].

Proposition 2. Let N, K be submodules of an R-module M with $K \subseteq N$. If N is a weakly 2-absorbing primary submodule of M, then N/K is a weakly

2-absorbing primary submodule of M/K. The converse is true when K is a weakly 2-absorbing primary submodule.

Proof. Assume that N is a weakly 2-absorbing primary submodule of M. Let $a,b \in R$ and $m+K \in M/K$ where $0_{M/K} \neq ab(m+K) \in N/K$. Since $ab(m+K) \neq 0_{M/K}$, we get $abm \in N$ and $abm \notin K$. If abm = 0, we obtain $abm + K = 0_{M/K}$. So $abm \neq 0$. Thus $ab \in (N : M)$ or $am \in M$ -rad(N)or $bm \in M$ -rad(N) as N is weakly 2-absorbing primary. Consequently, we get $ab \in (N/K: M/K)$ or $am+K = a(m+K) \in M$ -rad(N)/K = M/K-rad(N/K)or $bm + K = b(m + K) \in M$ -rad(N)/K = M/K-rad(N/K). Conversely, let Kbe a weakly 2-absorbing primary submodule. Assume that N/K is a weakly 2-absorbing primary submodule of M/K. Let $a,b \in R$ and $m \in M$ where $0 \neq abm \in N$. Then we have $abm + K \in N/K$. If $abm + K = 0_{M/K}$, then $abm \in K$. Thus $ab \in (K : M)$ or $am \in M$ -rad(K) or $bm \in M$ -rad(K), since Kis weakly 2-absorbing primary. Therefore, $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N), since $K \subseteq N$. Let $abm + K = ab(m + K) \neq 0_{M/K}$. Then $ab \in$ (N/K: M/K) or $a(m+K) \in M/K$ -rad(N/K) or $b(m+K) \in M/K$ -rad(N/K). Thus $ab \in (N : M)$ or $am \in M\text{-rad}(N)$ or $bm \in M\text{-rad}(N)$.

The following result is an analogue of [6, Theorem 2.20].

Proposition 3. Let M be an R-module and S be a multiplicatively closed subset of R. If N is a weakly 2-absorbing primary submodule of M where $(N:M) \cap S = \emptyset$, then $S^{-1}N$ is a weakly 2-absorbing primary submodule of $S^{-1}M$.

Proof. Let $0 \neq \frac{r}{s}\frac{t}{k}\frac{m}{l} = \frac{rtm}{skl} \in S^{-1}N$ where $r,t \in R, s,k,l \in S$ and $m \in M$. Then there is an element u of S such that $0 \neq urtm \in N$. Hence we get $urt \in (N:M)$ or $urm \in M$ -rad(N) or $tm \in M$ -rad(N) since N is weakly 2-absorbing primary. Then $\frac{r}{s}\frac{t}{k} = \frac{urt}{usk} \in S^{-1}(N:M) \subseteq (S^{-1}N:S^{-1}M)$ or $\frac{r}{s}\frac{m}{l} = \frac{urm}{usl} \in S^{-1}(M\text{-rad}(N)) = S^{-1}M\text{-rad}(S^{-1}N)$ or $\frac{t}{k}\frac{m}{l} = \frac{tm}{kl} \in S^{-1}(M\text{-rad}(N)) = S^{-1}M\text{-rad}(S^{-1}N)$.

Definition 2. Let N be a weakly 2-absorbing primary submodule of M. (a, b, m) is called a triple-zero of N if abm = 0, $ab \notin (N : M)$, $am \notin M$ -rad(N) and $bm \notin M$ -rad(N).

Note that if N is a weakly 2-absorbing primary submodule of M and there is no triple-zero of N, then N is a 2-absorbing primary submodule of M.

Proposition 4. Let N be a weakly 2-absorbing primary submodule of M and K be a proper submodule of M with $K \subseteq N$. Then for any $a, b \in R$ and $m \in M$, (a, b, m) is a triple-zero of N if and only if (a, b, m+K) is a triple-zero of N/K.

Proof. Let (a,b,m) be a triple-zero of N for some $a,b \in R$ and $m \in M$. Then abm = 0, $ab \notin (N:M)$, $am \notin M$ -rad(N) and $bm \notin M$ -rad(N). By Proposition 2, we get that N/K is a weakly 2-absorbing primary submodule of M/K. Thus ab(m+K) = K, $ab \notin (N/K:M/K)$, $a(m+K) \notin M$ -rad(N)/K

and $b(m+K) \notin M$ -rad(N)/K. Hence (a,b,m+K) is a triple-zero of N/K. Conversely, assume that (a,b,m+K) is a triple-zero of N/K. Suppose that $abm \neq 0$. Then $abm \in N$ since ab(m+K) = K. Thus $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N) as N is weakly 2-absorbing primary, a contradiction. So it must be abm = 0. Consequently, (a,b,m) is a triple-zero of N.

The following result is an analogue of [6, Theorem 2.9].

Theorem 1. Let N be weakly 2-absorbing primary submodule of M and (a, b, m) be a triple-zero of N for some $a, b \in R$ and $m \in M$. Then the followings hold.

- (1) abN = am(N:M) = bm(N:M) = 0.
- (2) $a(N:M)N = b(N:M)N = m(N:M)^2 = 0.$
- *Proof.* Suppose that (a, b, m) is a triple-zero of N for some $a, b \in R$ and $m \in M$.
- (1) Assume that $abN \neq 0$. Then there is an element $n \in N$ where $abn \neq 0$. Thus $ab(m+n) = abm + abn = abn \neq 0$. So $a(m+n) \in M$ -rad(N) or $b(m+n) \in M$ -rad(N) since $ab \notin (N:M)$ and N is weakly 2-absorbing primary. Hence $am \in M$ -rad(N) or $bm \in M$ -rad(N), which is a contradiction. Now, we suppose that $am(N:M) \neq 0$. Thus there exists an element $r \in (N:M)$ where $arm \neq 0$. Hence $a(r+b)m = arm + abm = arm \neq 0$ and since $am \notin M$ -rad(N), $bm \in M$ -rad(N) or $ab \in (N:M)$, a contradiction. Similarly, it can be easily seen that bm(N:M) = 0.
- (2) Assume that $a(N:M)N \neq 0$. Then there are $r \in (N:M)$, $n \in N$ such that $arn \neq 0$. By (1), we get $a(b+r)(m+n) = arn \neq 0$ and so $a(b+r) \in (N:M)$ or $a(m+n) \in M$ -rad(N) or $(b+r)(m+n) \in M$ -rad(N). Therefore, we obtain $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N), a contradiction. In a similar way, one can easily seen that b(N:M)N = 0. Let $m(N:M)^2 \neq 0$. Thus there exist $r, s \in (N:M)$ where $mrs \neq 0$. By (1), we get $(a+r)(b+s)m = rsm \neq 0$. Thus we have $(a+r)m \in M$ -rad(N) or $(b+s)m \in M$ -rad(N) or $(a+r)(b+s) \in (N:M)$ and so we get $am \in M$ -rad(N) or $bm \in M$ -rad(N) or $ab \in (N:M)$, a contradiction. Consequently, $m(N:M)^2 = 0$.

The following two results are an analogue of [6, Theorem 2.10].

Lemma 1. Assume that N is a weakly 2-absorbing primary submodule of an R-module M that is not 2-absorbing primary. Then $(N:M)^2N=0$. In particular, $(N:M)^3\subseteq Ann(M)$.

Proof. Suppose that N is a weakly 2-absorbing primary submodule of an R-module M that is not 2-absorbing primary. Then there is a triple-zero (a,b,m) of N for some $a,b \in R$ and $m \in M$. Assume that $(N:M)^2N \neq 0$. Thus there exist $r,s \in (N:M)$ and $n \in N$ with $rsn \neq 0$. By Theorem 1, we get $(a+r)(b+s)(n+m) = rsn \neq 0$. Then we have $(a+r)(b+s) \in (N:M)$ or $(a+r)(n+m) \in M$ -rad(N) or $(b+s)(n+m) \in M$ -rad(N) and so $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N), which is a contradiction. Thus we

get $(N:M)^2N = 0$. We get $(N:M)^3 \subseteq ((N:M)^2N:M) = (0:M) = Ann(M)$.

Proposition 5. Let M be a multiplication R-module and N be a weakly 2-absorbing primary submodule of M that is not 2-absorbing primary. Then $N^3 = 0$.

Proof. We have that (N:M)M=N since M is multiplication module. Then $N^3=(N:M)^3M=(N:M)^2N=0$. Consequently, $N^3=0$.

Definition 3. Let N be a weakly 2-absorbing primary submodule of an R-module M and let $0 \neq I_1I_2K \subseteq N$ for some ideals I_1, I_2 of R and some submodule K of M. N is called free triple-zero in regard to I_1, I_2, K if (a, b, m) is not a triple-zero of N for every $a \in I_1, b \in I_2$ and $m \in K$.

The following result and its proof are analogues of [6, Theorem 2.29] and its proof.

Lemma 2. Let N be a weakly 2-absorbing primary submodule of M. Assume that $abK \subseteq N$ for some $a, b \in R$ and some submodule K of M where (a, b, m) is not a triple-zero of N for every $m \in K$. If $ab \notin (N : M)$, then $aK \subseteq M$ -rad(N) or $bK \subseteq M$ -rad(N).

Proof. Assume that $aK \nsubseteq M\operatorname{-rad}(N)$ and $bK \nsubseteq M\operatorname{-rad}(N)$. Then there are $x,y \in K$ such that $ax \notin M\operatorname{-rad}(N)$ and $by \notin M\operatorname{-rad}(N)$. We get $bx \in M\operatorname{-rad}(N)$ since N is a weakly 2-absorbing primary submodule, (a,b,x) is not a triple-zero of N, $ab \notin (N:M)$ and $ax \notin M\operatorname{-rad}(N)$. In a similar way, $ay \in M\operatorname{-rad}(N)$. Now, we obtain $a(x+y) \in M\operatorname{-rad}(N)$ or $b(x+y) \in M\operatorname{-rad}(N)$ since (a,b,x+y) is not a triple-zero of N, $ab(x+y) \in N$ and $ab \notin (N:M)$. Assume that $a(x+y) = ax + ay \in M\operatorname{-rad}(N)$. As $ay \in M\operatorname{-rad}(N)$, we get $ax \in M\operatorname{-rad}(N)$, which is a contradiction. Assume that $b(x+y) = bx + by \in M\operatorname{-rad}(N)$. As $bx \in M\operatorname{-rad}(N)$, we get $by \in M\operatorname{-rad}(N)$, a contradiction again. Hence we obtain that $aK \subseteq M\operatorname{-rad}(N)$ or $bK \subseteq M\operatorname{-rad}(N)$. □

Let N be a weakly 2-absorbing primary submodule of an R-module M and $I_1I_2K\subseteq N$ for some ideals I_1,I_2 of R and some submodule K of M where N is free triple-zero in regard to I_1,I_2,K . Note that if $a\in I_1,\ b\in I_2$ and $m\in K$, then $ab\in (N:M)$ or $am\in M$ -rad(N) or $bm\in M$ -rad(N).

The following result and its proof are analogues of [6, Theorem 2.30] and its proof.

Theorem 2. Assume that N is a weakly 2-absorbing primary submodule of an R-module M and $0 \neq I_1I_2K \subseteq N$ for some ideals I_1, I_2 of R and some submodule K of M where N is free triple-zero in regard to I_1, I_2, K . Then $I_1I_2 \subseteq (N:M)$ or $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N).

Proof. Let N be a weakly 2-absorbing primary submodule of M and $0 \neq I_1I_2K \subseteq N$ for some ideals I_1, I_2 of R and some submodule K of M where

N is free triple-zero in regard to I_1, I_2, K . Suppose that $I_1I_2 \nsubseteq (N:M)$. Now, we show that $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N). Assume that $I_1K \nsubseteq$ M-rad(N) and $I_2K \nsubseteq M$ -rad(N). Then $xK \nsubseteq M$ -rad(N) and $yK \nsubseteq M$ -rad(N)where $x \in I_1$ and $y \in I_2$. By Lemma 2, we get $xy \in (N:M)$ since $xyK \subseteq N$, $xK \nsubseteq M$ -rad(N) and $yK \nsubseteq M$ -rad(N). By our assumption, there are $a \in I_1$ and $b \in I_2$ such that $ab \notin (N:M)$. By Lemma 2, we get $aK \subseteq M$ -rad(N) or $bK \subseteq M$ -rad(N) as $abK \subseteq N$ and $ab \notin (N:M)$. We investigate three cases. **First case:** Assume that $aK \subseteq M$ -rad(N) and $bK \not\subseteq M$ -rad(N). Since $xbK \subseteq$ $N, xK \nsubseteq M\operatorname{-rad}(N)$ and $bK \nsubseteq M\operatorname{-rad}(N)$, then we get $xb \in (N:M)$, by Lemma 2. We have $(x+a)K \not\subseteq M$ -rad(N) as $(x+a)bK \subseteq N$, $xK \not\subseteq M$ -rad(N)and $aK \subseteq M$ -rad(N). Since $bK \not\subseteq M$ -rad(N) and $(x+a)K \not\subseteq M$ -rad(N), then we obtain $b(x+a) \in (N:M)$, by Lemma 2. Thus since $b(x+a) = xb + ab \in$ (N:M) and $xb \in (N:M)$, then $ab \in (N:M)$, which is a contradiction. Second case: Assume that $aK \nsubseteq M\operatorname{-rad}(N)$ and $bK \subseteq M\operatorname{-rad}(N)$. It is easily shown similarly to the first case. Third case: Suppose that $aK \subseteq M\operatorname{-rad}(N)$ and $bK \subseteq M\operatorname{-rad}(N)$. Then $(y+b)K \not\subseteq M\operatorname{-rad}(N)$ as $yK \nsubseteq M$ -rad(N) and $bK \subseteq M$ -rad(N). By Lemma 2, $x(y+b) \in (N:M)$ since $x(y+b)K \subseteq N$, $xK \not\subseteq M$ -rad(N) and $(y+b)K \not\subseteq M$ -rad(N). Then $xb \in (N:M)$ since $x(y+b) \in (N:M)$ and $xy \in (N:M)$. As $aK \subseteq M$ -rad(N)and $xK \nsubseteq M\operatorname{-rad}(N)$, then $(x+a)K \nsubseteq M\operatorname{-rad}(N)$. As $(x+a)yK \subseteq N$, $yK \nsubseteq M\operatorname{-rad}(N)$ and $(x+a)K \nsubseteq M\operatorname{-rad}(N)$, then $(x+a)y = xy + ay \in (N:M)$ by Lemma 2. As $xy \in (N:M)$ and $ay + xy \in (N:M)$, then $ay \in (N:M)$. By Lemma 2, we get $(x + a)(y + b) = xy + xb + ay + ab \in (N : M)$ since $(x+a)(y+b)K\subseteq N, (x+a)K\nsubseteq M\operatorname{-rad}(N) \text{ and } (y+b)K\nsubseteq M\operatorname{-rad}(N).$ As $xb, ay, xy \in (N:M)$, then $xy + xb + ay \in (N:M)$. Thus, $ab \in (N:M)$ since $xy + xb + ay + ab \in (N:M)$ and $xy + xb + ay \in (N:M)$, a contradiction. Hence $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N).

Lemma 3. Let N be a weakly 2-absorbing primary submodule of M. If $abK \subseteq N$ and $0 \neq 2abK$ for some submodule K of M and for some $a, b \in R$, then $ab \in (N : M)$ or $aK \subseteq M$ -rad(N) or $bK \subseteq M$ -rad(N).

Proof. Assume that $ab \notin (N:M)$. Now, we show that $K \subseteq (M\operatorname{-rad}(N):a) \cup (M\operatorname{-rad}(N):b)$. Let $x \in K$. If $0 \neq abx$, then $ax \in M\operatorname{-rad}(N)$ or $bx \in M\operatorname{-rad}(N)$ since $ab \notin (N:M)$. Thus $x \in (M\operatorname{-rad}(N):a) \cup (M\operatorname{-rad}(N):b)$. Suppose that abx = 0. As $0 \neq 2abK$, there is $y \in K$ such that $2aby \neq 0$. Then we get $0 \neq aby \in N$. So $ay \in M\operatorname{-rad}(N)$ or $by \in M\operatorname{-rad}(N)$ since N is weakly 2-absorbing primary. Let z = x + y. Then $0 \neq abz \in N$. Since $ab \notin (N:M)$, then $az \in M\operatorname{-rad}(N)$ or $bz \in M\operatorname{-rad}(N)$. Now, we consider three cases. First case: Assume that $ay \in M\operatorname{-rad}(N)$ and $by \notin M\operatorname{-rad}(N)$. Let $ax \notin M\operatorname{-rad}(N)$ and $b(z + x) \notin M\operatorname{-rad}(N)$. Thus $bz \in M\operatorname{-rad}(N)$. So $a(z + x) \notin M\operatorname{-rad}(N)$ and $b(z + x) \notin M\operatorname{-rad}(N)$. Hence 0 = ab(z + x) = 2abz since N is a weakly 2-absorbing primary submodule and $ab \notin (N:M)$. This is a contradiction. Consequently, $ax \in M\operatorname{-rad}(N)$. Second case: Assume that $ay \notin M\operatorname{-rad}(N)$ and $by \in M\operatorname{-rad}(N)$. It is proved by a similar way to first case. Third case:

Assume that $ay \in M$ -rad(N) and $by \in M$ -rad(N). Since $az \in M$ -rad(N) or $bz \in M$ -rad(N), $ax \in M$ -rad(N) or $bx \in M$ -rad(N).

Lemma 4. Let N be a weakly 2-absorbing primary submodule of an R-module M. If $aJK \subseteq N$ and $0 \neq 4aJK$ for some submodule K of M, for any ideal J of R and for some $a \in R$, then $aJ \subseteq (N:M)$ or $aK \subseteq M$ -rad(N) or $JK \subseteq M$ -rad(N).

Proof. Suppose that $aJ \nsubseteq (N:M)$. Then there is $j \in J$ such that $aj \notin (N:M)$ M). Our claim is that there is $b \in J$ such that $0 \neq 4abK$ and $ab \notin (N:M)$. As $0 \neq 4aJK$, then there is $j' \in J$ such that $0 \neq 4aj'K$. Assume that $aj' \notin (N:M)$ and $0 \neq 4ajK$. Then we have the result for b=j' or b=j. Now, let $aj' \in (N:M)$ and 4ajK = 0. Then $0 \neq 4a(j+j')K \subseteq N$ and $a(j+j') \notin (N:M)$ since $aj \notin (N:M)$ and $aj' \in (N:M)$. Hence we get $b = j + j' \in J$ such that $0 \neq 4abK \subseteq N$ and $ab \notin (N : M)$. Thus $0 \neq 2abK$ and so $K \subseteq (M\text{-rad}(N):a) \cup (M\text{-rad}(N):b)$ by Lemma 3. If $K \subseteq$ $(M\operatorname{-rad}(N):a)$, the proof is completed. Suppose that $K \not\subseteq (M\operatorname{-rad}(N):a)$. Then $K \subseteq (M\operatorname{-rad}(N) : b)$, that is, $bK \subseteq M\operatorname{-rad}(N)$. Let $c \in J$. Assume that $0 \neq 2acK$. By Lemma 3, $ac \in (N : M)$ or $cK \subseteq M$ -rad(N) since $K \nsubseteq (M\operatorname{-rad}(N) : a)$. Then $c \in ((N : M) : a) \cup (M\operatorname{-rad}(N) : K)$. Now, let 2acK = 0. Then $0 \neq 2a(b+c)K \subseteq N$. By Lemma 3, we have $a(b+c) \in (N:M)$ or $(b+c)K \subseteq M$ -rad(N) since $K \nsubseteq (M$ -rad(N): a). Thus we get $b+c \in ((N:$ $(M):a)\cup (M\operatorname{-rad}(N):K).$ If $b+c\in (M\operatorname{-rad}(N):K)$, then $c\in (M\operatorname{-rad}(N):K)$ K). Hence $JK \subseteq M$ -rad(N). Let $b + c \in ((N : M) : a) \setminus (M$ -rad(N) : K). Note that $2a(b+c+b)K = 4abK \neq 0$ and $2a(b+c+b)K \subseteq N$. Since $ab \notin (N:M)$ and $a(b+c) \in (N:M)$, $a(b+c+b) \notin (N:M)$. Thus by Lemma 3, $K \subseteq (M\operatorname{-rad}(N): a) \cup (M\operatorname{-rad}(N): (b+c+b))$. As $b+c \notin (M\operatorname{-rad}(N): K)$ and $b \in (M\text{-rad}(N):K)$, then we get $(b+c+b) \notin (M\text{-rad}(N):K)$ and so $K \subseteq (M\operatorname{-rad}(N):a)$, a contradiction. Thus $b+c \in (M\operatorname{-rad}(N):K)$. Since $b \in (M\operatorname{-rad}(N) : K), c \in (M\operatorname{-rad}(N) : K). \text{ Hence } J \subseteq ((N : M) : a) \cup$ $(M\operatorname{-rad}(N):K)$. Consequently $J\subseteq (M\operatorname{-rad}(N):K)$ since $aJ\nsubseteq (N:M)$. \square

Theorem 3. Let I_1 , I_2 be ideals of R and N, K be submodules of an R-module M. Assume that N is a weakly 2-absorbing primary submodule. If $0 \neq I_1I_2K$ and $0 \neq 8(I_1I_2 + (I_1 + I_2)(N : K))(K + N)$, then $I_1I_2 \subseteq (N : M)$ or $I_1K \subseteq M$ -rad(N) or $I_2K \subseteq M$ -rad(N).

Proof. It is clear from Lemma 4 and [12, Theorem 2.3]. \Box

Theorem 4. Let M be a finitely generated multiplication R-module whose every proper submodule is weakly 2-absorbing primary. Then there exist at most three maximal ideals of R containing Ann(M).

Proof. Assume that R has four maximal ideals \Im_1, \Im_2, \Im_3 and \Im_4 containing Ann(M). Let $K = \Im_1 \cap \Im_2 \cap \Im_3$ and N = KM. Note that $\Im_i M \neq M$ for every index i. Indeed, if $\Im_i M = M$ for some index i, then there is an element $r \in \Im_i$ such that $r - 1 \in Ann(M) \subseteq \Im_i$, contradiction. It is easily seen that

 $\Im_i = (\Im_i M : M)$ as $\Im_i \subseteq (\Im_i M : M)$. We get $K \subseteq (N : M) \subseteq \bigcap_{i=1}^3 (\Im_i M : M)$

M)=K. Thus $\sqrt{(N:M)}=\sqrt{K}=\sqrt{\Im_1}\cap\sqrt{\Im_2}\cap\sqrt{\Im_3}$. Hence we get that (N:M) is not a 2-absorbing primary ideal by [13, Corollary 2.7]. Then N is not a 2-absorbing primary submodule by [14, Theorem 2.6]. By Lemma 1, $(N:M)^3\subseteq Ann(M)\subseteq\Im_4$. Then $\Im_i=\Im_4$ for $i\in\{1,2,3\}$, a contradiction. Therefore, there are at most three maximal ideals of R containing Ann(M). \square

Corollary 1. Let M be a finitely generated multiplication R-module whose every proper submodule is weakly 2-absorbing primary. Then $(J(R))^3M=0$.

Proof. We have that $K^3 \subseteq Ann(M)$ by the proof of Theorem 4. Thus we obtain $(J(R))^3M = 0$.

Let M be a multiplication R-module and K, L be R-submodules of M. Then there exist ideals I and J of R such that K = IM and L = JM. Hence KL = IJM = IL and KL = IJM = KJ. In particular, we obtain that KM = IM = K, LM = JM = L and Km = KRm for every $m \in M$. Therefore, Km = IRm = Im.

Lemma 5. Let M be a multiplication R-module. If (N : M) is a weakly primary ideal of R, then N is a weakly primary submodule of M.

Proof. Assume that $0 \neq am \in N$ for some $a \in R$ and $m \in M$ with $a \notin \sqrt{(N:M)}$. Since M is multiplication, there exists an ideal I of R such that m = Rm = IM, then $0 \neq RaIM \subseteq N$. Since (N:M) is weakly primary and $a \notin \sqrt{(N:M)}$, we have ((N:M):Ra) = (N:M) or ((N:M):Ra) = (0:Ra), by [1, Proposition 2.1]. We claim that $Ra \subseteq (N:M)$ or $IM \subseteq N$. Suppose that $Ra \nsubseteq (N:M)$. Then since $0 \neq RaIM$, we get that $I \subseteq (N:RaM) = ((N:M):Ra) = (N:M)$. Hence $IM \subseteq N$ and so $m \in N$, as needed. □

Corollary 2. Let M be a finitely generated multiplication R-module. Suppose that every proper ideal of R is weakly primary such that not primary ideal. Then $(J(R))^3M=0$.

Proof. Assume that (N:M) is a proper weakly primary ideal of R. Thus (N:M)M=N is a weakly 2-absorbing primary submodule. By Corollary 1, we get $(J(R))^3M=0$.

The following result is an analogue of [6, Theorem 2.21].

Lemma 6. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where $0 \neq M_1$ is a multiplication R_1 -module and $0 \neq M_2$ is a multiplication R_2 -module. Then the followings hold:

- (1) The following statements are equivalent:
 - i. $N_1 \times M_2$ is a weakly 2-absorbing primary submodule of $M_1 \times M_2$;
 - ii. $N_1 \times M_2$ is a 2-absorbing primary submodule of $M_1 \times M_2$;

- iii. N_1 is a 2-absorbing primary submodule of M_1 .
- (2) The following statements are equivalent:
 - i. $M_1 \times N_2$ is a weakly 2-absorbing primary submodule of $M_1 \times M_2$;
 - ii. $M_1 \times N_2$ is a 2-absorbing primary submodule of $M_1 \times M_2$;
 - iii. N_2 is a 2-absorbing primary submodule of M_2 .
- *Proof.* (1) (i)⇒(ii): Assume that $N_1 \times M_2$ is not a 2-absorbing primary submodule of $M_1 \times M_2$. By Lemma 1, $(0,0) = ((N_1 \times M_2) : (M_1 \times M_2))^2 (N_1 \times M_2) = ((N_1 : M_1) \times (M_1 : M_2))^2 (N_1 \times M_2) = (N_1 : M_1)^2 N_1 \times M_2$. Then $M_2 = 0$, a contradiction.
 - $(ii) \Rightarrow (i)$: Is obvious.
 - (ii)⇒(iii): It is clear.
- (2) The other part of the lemma can be seen in a similar way to the proof of the first part. $\hfill\Box$
- **Lemma 7.** Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where $0 \neq M_1$ is a multiplication R_1 -module and $0 \neq M_2$ is a multiplication R_2 -module. If $N_1 \times N_2$ is a weakly 2-absorbing primary submodule of M, $N_1 \neq M_1$, $N_2 \neq 0$ and $N_2 \neq M_2$, then N_1 is a weakly 2-absorbing primary submodule of M_1 .
- Proof. Assume that $N_1 \neq M_1$, $N_2 \neq 0$ and $N_2 \neq M_2$. Let $a_1, b_1 \in R_1$ and $x_1 \in M_1$ where $a_1b_1x_1 \in N_1$ and let $0 \neq x_2 \in N_2$. Then $(0,0) \neq (a_1,1)(b_1,1)(x_1,x_2) \in N_1 \times N_2$. Since $N_1 \times N_2$ is a weakly 2-absorbing primary submodule, then $(a_1,1)(b_1,1) \in ((N_1 \times N_2) : M)$ or $(a_1,1)(x_1,x_2) \in M$ -rad $(N_1 \times N_2) = M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(b_1,1)(x_1,x_2) \in M$ -rad $(N_1) \times M_2$ -rad (N_2) . As $1 \notin (N_2 : M_2)$, then we get $(a_1,1)(x_1,x_2) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(b_1,1)(x_1,x_2) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) . Thus $a_1x_1 \in M_1$ -rad (N_1) or $b_1x_1 \in M_1$ -rad (N_1) . The proof is completed. □
- By [15], it is said that a commutative ring R is a u-ring if an ideal of R contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.
- **Theorem 5.** Let N be a weakly 2-absorbing primary submodule of M. Then the following statements hold:
 - (1) If $ab \notin (N:M)$ for some $a,b \in R$, then $(N:ab) \subseteq (M\operatorname{-rad}(N):a) \cup (M\operatorname{-rad}(N):b) \cup (0:ab)$.
 - (2) Let R be a um-ring. If $ab \notin (N:M)$ for some $a,b \in R$, then $(N:ab) \subseteq (M-rad(N):a)$ or $(N:ab) \subseteq (M-rad(N):b)$ or (N:ab) = (0:ab).
- *Proof.* Assume that N is a weakly 2-absorbing primary submodule of M.
- (1) Let $m \in (N:ab)$. Assume that $abm \neq 0$. Then $abm \in N$ and thus $am \in M\operatorname{-rad}(N)$ or $bm \in M\operatorname{-rad}(N)$ since $ab \notin (N:M)$. Hence $m \in (M\operatorname{-rad}(N):a)$ or $m \in (M\operatorname{-rad}(N):b)$. Therefore, $m \in (M\operatorname{-rad}(N):a) \cup (M\operatorname{-rad}(N):b)$. Assume that abm = 0. Then $m \in (0:ab)$. Consequently, $m \in (M\operatorname{-rad}(N):a) \cup (M\operatorname{-rad}(N):b) \cup (0:ab)$.

(2) Assume that R is a um-ring. It is easily obtained by part (1).

Theorem 6. Let N be a weakly 2-absorbing primary submodule of M. Then the following statements hold:

- (1) If $abm \notin N$ for some $a,b \in R$ and $m \in M$, then $(N:abm) \subseteq (M-rad(N):am) \cup (M-rad(N):bm) \cup (0:abm)$.
- (2) Let R be a u-ring. If $abm \notin N$ for some $a,b \in R$ and $m \in M$, then $(N:abm) \subseteq (M\text{-}rad(N):am)$ or $(N:abm) \subseteq (M\text{-}rad(N):bm)$ or (N:abm) = (0:abm).

Proof. Assume that N is a weakly 2-absorbing primary submodule of M.

- (1) Let $r \in (N:abm)$. Assume that $rabm \neq 0$. Then $rabm \in N$ and thus $ram \in M\operatorname{-rad}(N)$ or $rbm \in M\operatorname{-rad}(N)$ since $ab \notin (N:M)$. Hence $r \in (M\operatorname{-rad}(N):am)$ or $r \in (M\operatorname{-rad}(N):bm)$. Therefore, $r \in (M\operatorname{-rad}(N):am) \cup (M\operatorname{-rad}(N):bm)$. Assume that rabm = 0. Then $r \in (0:abm)$. Consequently, $r \in (M\operatorname{-rad}(N):am) \cup (M\operatorname{-rad}(N):bm) \cup (0:abm)$.
 - (2) Assume that R is a u-ring. The result is easily seen by part (1). \square

Proposition 6. Let M be a faithful multiplication R-module and N be a submodule of M. If N is a weakly 2-absorbing primary submodule but it is not 2-absorbing primary, then $N \subseteq M$ -rad(0). In addition M-rad(N) = M-rad(0).

Proof. By Lemma 1, $(N:M)^3 \subseteq Ann(M)$. Since M is a faithful module, $(N:M)^3 = 0$. Now suppose that $a \in (N:M)$. Then $a^3 = 0$ and so $a \in \sqrt{0}$. Hence $(N:M) \subseteq \sqrt{0}$ and thus $N = (N:M)M \subseteq M$ -rad(0). In addition, by Lemma 1, $(N:M)^2N = 0$. Then $(N:M)^3 = (N:M)^2(N:M) \subseteq ((N:M)^2N:M) = Ann(M)$ and so $(N:M) \subseteq \sqrt{Ann(M)}$. Thus $\sqrt{(N:M)} = \sqrt{Ann(M)}$. Hence M-rad(N) = \sqrt{N} = \sqrt

Theorem 7. Let M be an R-module and N be a submodule of M. Suppose that M-rad(0) is a prime submodule. Then N is a weakly 2-absorbing primary submodule if and only if N is a 2-absorbing primary submodule.

Proof. Assume that N is weakly 2-absorbing primary. Suppose that $abm \in N$ for some $a,b \in R$ and $m \in M$. If $0 \neq abm \in N$, then either $ab \in (N:M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N). If abm = 0, we may suppose that $ab \notin (N:M)$. Since that M-rad(0) is a prime submodule, we can conclude that $a \in (M$ -rad $(0):_R M)$ or $bm \in M$ -rad(0). Since M-rad $(0) \subseteq M$ -rad(N), we obtain that $am \in M$ -rad(N) or $bm \in M$ -rad(N). Therefore N is 2-absorbing primary. The converse is obviously. □

Theorem 8. Let M be a multiplication R-module and N be a submodule of M. Suppose that M is a P-primary module. If N is a weakly 2-absorbing primary submodule, then (N:M) is a weakly 2-absorbing primary ideal.

Proof. Assume that $0 \neq abc \in (N:M)$ for some $a,b,c \in R$ with $ab \notin (N:M)$. Then $abcm \in N$ for each $m \in M$. If abcm = 0, then $abc \in (0:R) = P$.

Since M is a P-primary module, we conclude that $c^n \in P \subseteq (N:M)$ for some positive integer n. Thus $ac \in \sqrt{(N:M)}$, as needed. Suppose that $0 \neq abcm \in N$. Since N is weakly 2-absorbing primary, we can conclude that $acm \in M$ -rad(N) (so $ac \in ((M\text{-rad}(N):M))$ or $bcm \in M$ -rad(N) (so $bc \in ((M\text{-rad}(N):M))$. Hence $ac \in \sqrt{(N:M)}$ or $bc \in \sqrt{(N:M)}$. Therefore (N:M) is a weakly 2-absorbing primary ideal.

Theorem 9. Let M be a multiplication R-module and N be a submodule of M. Suppose that M is a P-primary module. If N is a weakly 2-absorbing primary submodule, then $\sqrt{(N:M)}$ is a weakly 2-absorbing ideal.

Proof. Assume that $0 \neq abc \in \sqrt{(N:M)}$ with $ab \notin \sqrt{(N:M)}$ for some $a,b,c \in R$. Then $(abc)^n m \in N$ for some positive integer n and every $m \in M$. If $(abc)^n m = 0$ since M is a P-primary module, then $abc \in (0:_R m) = (0:_R M) = P \subseteq (N:M)$. Hence $ac \in \sqrt{(N:M)}$, as needed. Suppose that $0 \neq (abc)^n m = a^n b^n (c^n m) \in N$. Since N is a weakly 2-absorbing primary submodule and $ab \notin \sqrt{(N:M)}$, we conclude that $a^n (c^n m) \in M$ -rad(N) (so $a^n c^n \in (M$ -rad(N) : M)) or $b^n (c^n m) \in M$ -rad(N) (so $b^n c^n \in (M$ -rad(N) : M)). Since (M-rad $(N) : M) = \sqrt{(N:M)}$, we can conclude that $ac \in \sqrt{(N:M)}$ or $bc \in \sqrt{(N:M)}$. Therefore $\sqrt{(N:M)}$ is a weakly 2-absorbing ideal. □

Theorem 10. Let M be an R-module and N be a submodule of M. If N is a weakly 2-absorbing submodule, then (N:m) is a weakly 2-absorbing ideal for every $m \in M \setminus N$ with Ann(m) = 0.

Proof. Assume that $0 \neq abc \in (N:m)$ for some $a,b,c \in R$. Then $abcm \in N$. If abcm = 0, then $abc \in (0:Rm) = 0$ and we are done. Suppose that $0 \neq abcm \in N$. Since N is a weakly 2-absorbing submodule, we conclude that $ab \in (N:_R M)$ (so $ab \in (N:m)$) or $bcm \in N$ (so $bc \in (N:m)$) or $acm \in N$ (so $ac \in (N:m)$). Therefore (N:m) is a weakly 2-absorbing ideal for every $m \in M \setminus N$.

We invite the reader to compare the following two results with [6, Theorem 2.23].

Theorem 11. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ be a finitely generated multiplication R-module where M_1 and M_2 are multiplication R_1 -module and R_2 -module, respectively. If $N = N_1 \times N_2$ is a weakly 2-absorbing primary submodule, then N = 0 or N is 2-absorbing primary.

Proof. Assume that $0 \neq N = N_1 \times N_2$ and show that N is a 2-absorbing primary submodule. Without loss of generality we may suppose that $N_2 \neq 0$. Then there exists a nonzero element $y \in N_2$. Suppose that $a \in (N_1 : M_1)$ and $x \in M_1$. Then $0 \neq (a,1)(1,1)(x,y) \in N = N_1 \times N_2$. Since N is a weakly 2-absorbing primary submodule, we conclude that $(a,1)(1,1) \in (N_1 \times N_2 : M)$ or $(a,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(1,1)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad $(N_1) \times M_$

 M_2 -rad (N_2) . Then $1 \in (N_2 : M_2)$ or $ax \in M_1$ -rad (N_1) or $y \in M_2$ -rad (N_2) . Suppose that $1 \in (N_2 : M_2)$. If $N_1 = 0$, then $0 \times M_2 \subseteq N$ and so we may assume that $N = N_1 \times M_2$. Let $ax \in M_1$ -rad (N_1) . Here we will have two cases; if $x \in N_1$, then since $N_2 \neq 0$, we can assume that $0 \times M_2 \subseteq N$ and so $N_1 \times M_2 = N$. If $x \notin N_1$ $(x \in M_1 \setminus N_1)$, then since $N_1 \neq M_1$ and $N_2 \neq 0$, we may suppose that $N = N_1 \times M_2$. Then we show that if $N = N_1 \times M_2$, then N_1 is 2-absorbing primary and if $N = M_1 \times N_2$, then N_2 is 2-absorbing primary. For beginning we assume that $N = N_1 \times M_2$ and show that N_1 is 2-absorbing primary. Let $rsm \in N_1$ for some $r, s \in R_1$ and $m \in M_1$. Then $(0,0) \neq (r,1)(s,1)(m,y) \in N_1 \times M_2$. Thus either $(r,1)(s,1) \in (N_1 \times N_2 :_R M)$ or $(r,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (M_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_1$ -rad $(N_1) \times M_2$ -rad (N_2) or $(s,1)(m,y) \in M_2$ -rad (N_2) M_2 -rad (M_2) and so either $rs \in N_1$ or $rm \in M_1$ -rad (N_1) or $sm \in M_1$ -rad (N_1) . Therefore $N = N_1 \times N_2$ is a 2-absorbing primary submodule, by Lemma 6. By similar way we can show that N_2 is a 2-absorbing primary submodule and so $N = M_1 \times N_2$ is 2-absorbing primary, by Lemma 6. Now we show that N_1 and N_2 are primary submodules. Assume that $N_2 \neq M_2$. Let $t \in R_1$ and $n \in M_1$ such that $tn \in N_1$ with $0 \neq n' \in N_2$. Then $(0,0) \neq (t,1)(1,1)(n,n') \in N_1 \times N_2$. Since $N_1 \times N_2$ is a weakly 2-absorbing primary submodule, we conclude that $(t,1)(1,1) \in (N_1 \times N_2 :_R M) \text{ or } (t,1)(n,n') \in M_1\text{-rad}(N_1) \times M_2\text{-rad}(N_2) \text{ or }$ $(1,1)(n,n') \in M_1\text{-rad}(N_1) \times M_2\text{-rad}(N_2)$. But $1 \notin (N_2 : M_2)$. Then $tn \in$ M_1 -rad (N_1) and so N_1 is primary. Similarly we can show that N_2 is a primary submodule. Therefore N is a 2-absorbing primary submodule, by [14, Theorem 2.28].

Theorem 12. Let M_1 and M_2 be multiplication modules. Suppose that $N_1 \neq M_1$ and $M_2 \neq 0$. The submodule $N_1 \times 0$ is a weakly 2-absorbing primary submodule if one of the following statements hold:

- (1) N_1 is a weakly primary submodule of M_1 and 0 is a primary submodule of M_2 and M_1 -rad $(N_1) \neq 0$;
- (2) N_1 is a weakly primary submodule of M_1 and 0 is a primary submodule of M_2 and M_1 -rad $(N_1) = 0$;
- (3) $N_1 = 0$.

Proof. Assume that $(0,0) \neq (a,b)(c,d)(x,y) \in N_1 \times 0$ with $(a,b)(c,d) \notin (N_1 \times 0:M)$. Then $0 \neq acx \in N_1$ and bdy = 0. Since N_1 is weakly primary, we have $a \in \sqrt{(N_1:M_1)}$ or $cx \in N_1$. Since 0 is a primary submodule, we get that $b \in \sqrt{(0:M_2)}$ or dy = 0. Then $ax \in M_1$ -rad (N_1) or $cx \in M_1$ -rad (N_1) and $by \in M_2$ -rad(0) or $dy \in M_2$ -rad(0). Hence $(a,b)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad(0) or $(c,d)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad(0), as needed. Now suppose that (2) holds. Then since N_1 is weakly primary and $0 \neq acx \in N_1$, we get that $a \in \sqrt{(N_1:M_1)}$ or $cx \in N_1$. If $a \in \sqrt{(N_1:M_1)}$, then $ax \in M_1$ -rad $(N_1) = 0$. Thus as $cx \in M_1$ -rad $(N_1) = 0$, acx = 0 which is a contradiction. Then neither $(a,b)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad(0) nor

 $(c,d)(x,y) \in M_1$ -rad $(N_1) \times M_2$ -rad(0). Therefore $N_1 \times 0$ is weakly 2-absorbing primary. The latest statement is obviously.

Example 1. Suppose that $M = \mathbb{Z} \times \mathbb{Z}$ is an $R = \mathbb{Z} \times \mathbb{Z}$ -module and $N = p\mathbb{Z} \times \{0\}$ is a submodule of M where $p\mathbb{Z}$ is a weakly primary submodule and $\{0\}$ is weakly primary. Then \mathbb{Z} -rad $(p\mathbb{Z}) = p\mathbb{Z}$ and (N:M) = 0. Assume that $(0,0) \neq (p,1)(1,0)(1,1) \in \mathbb{Z} \times \{0\}$. Then neither $(p,1)(1,0) \in (N:M)$ nor $(p,1)(1,1) \in M$ -rad(N) nor $(1,0)(1,1) \in M$ -rad(N). Hence N is not weakly 2-absorbing primary. Notice that M is not a multiplication module.

Proposition 7. Let M be a multiplication R-module and N_1, \ldots, N_n be weakly 2-absorbing primary submodules with M-rad $(N_i) = P$ where P is a prime submodule. Then $N = \bigcap_{i=1}^{n} N_i$ is weakly 2-absorbing primary.

Proof. Assume that $0 \neq abm \in N$ for some $a, b \in R$ and $m \in M$ with $ab \notin (N : M)$. By [5, Propositin 2.14], M-rad $(N) = \bigcap_{i=1}^{n} M$ -rad (N_i) . Then $ab \notin (N_i : M)$ for some $1 \leq i \leq n$. Since N_i is a weakly 2-absorbing primary submodule, $am \in M$ -rad $(N_i) = P$ or $bm \in M$ -rad $(N_i) = P$. Hence $am \in M$ -rad(N) or $bm \in M$ -rad(N), as needed. □

Definition 4. Let N be a weakly 2-absorbing primary submodule of an R-module M and M-rad(N) = P, by Proposition 7. We say that N is a P-weakly 2-absorbing primary submodule.

Let R be a ring with identity and M be an R-module. Then R(M) = R(+)M with multiplication (a,m)(b,n) = (ab,an+bm) and with addition (a,m)+(b,n)=(a+b,m+n) is a commutative ring with identity and 0(+)M is a nilpotent ideal of index 2. The ring R(+)M is said to be the *idealization* of M or trivial extension of R by M. We view R as a subring of R(+)M via $r \to (r,0)$. An ideal H is said to be homogeneous if H = I(+)N for some ideal I of R and some submodule N of M; whence $IM \subseteq N$, [9] and [11, Sec, 25]. Let R_1 and R_2 be commutative rings, M_1 and M_2 be R-modules. Then $(R_1 \times R_2)(+)(M_1 \times M_2) \approx (R_1(+)M_1) \times (R_2(+)M_2)$, by [9, Theorem 4.4]. Now we use it to characterize one of the result of weakly 2-absorbing primary ideals by the idealization method.

Proposition 8. Let R_1 and R_2 be commutative rings, M_1 be R_1 -module and M_2 be R-module, respectively. Suppose that $H = I(+)M_1$ is an ideal of $R_1(M_1) = R_1(+)M_1$ and $J = h(+)M_2$ is an ideal of $R_2(M_2) = R_2(+)M_2$. Then the following statement are equivalent:

- (1) $H \times R_2(M_2)$ is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_1(M_1) \times R_2(M_2)$;
 - i. $R_1(M_1) \times J$ is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of $R_1(M_1) \times R_2(M_2)$;
- (2) H is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R₁(M₁);
 ii. J is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R₂(M₂);

Proof. (1) \Rightarrow (2) Assume that $(a,x)(b,y)(c,z) \in H = I(+)M_1$ for some $a,b,c \in R$ and $x,y,z \in M_1$. Thus $abc \in I$. Since $H \times R_2(M_2) = (I(+)M_1) \times (R_2(+)M_2) = (I_1 \times R_2)(+)(M_1 \times M_2)$ is a 2-absorbing primary ideal, $H = I(+)M_1$ is 2-absorbing primary and hence I is a 2-absorbing primary ideal of R_1 , by [6, Theorem 2.21]. Then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Therefore $(a,x)(b,y) \in I(+)M_1$ or $(b,y)(c,z) \in \sqrt{I(+)M_1} = \sqrt{I}(+)M_1$ or $(a,x)(c,z) \in \sqrt{I(+)M_1} = \sqrt{I}(+)M_1$, as needed.

 $(2) \Rightarrow (1)$ Let H be 2-absorbing primary. Assume that $(u_1, v_1)(u_2, v_2)(u_3, v_3) \in H \times R_2(M_2)$ such that $u_1, u_2, u_3 \in H$ and $v_1, v_2, v_3 \in R_2(M_2)$. Then $u_1u_2u_3 \in H = I(+)M_1$ where $u_1 = (a, x), u_2 = (b, y)$ and $u_3 = (c, z)$. Since H is a 2-absorbing primary ideal, I is 2-absorbing primary, by [6, Theorem 2.21]. Then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Hence $(a, x)(b, y) = u_1u_2 \in I(+)M_1$ or $(b, y)(c, z) = u_2u_3 \in \sqrt{I(+)M_1} = \sqrt{I(+)M_1}$ or $(a, x)(c, z) = u_1u_3 \in \sqrt{I(+)M_1} = \sqrt{I(+)M_1}$. Therefore $(u_1, v_1)(u_2, v_2) \in H \times R_2(M_2)$ or $(u_2, v_2)(u_3, v_3) \in \sqrt{H \times R_2(M_2)} = (\sqrt{I(+)M_1}) \times (R_2(+)M_2)$. Then $H \times R_2(M_2)$ is a 2-absorbing primary ideal of $R_1(M_1) \times R_2(M_2)$.

The proof of (i) if and only if (ii) is clear by similar arguments as previously shown, and hence we omit the proof. \Box

References

- S. E. Atani and F. Farzalipour, On weakly primary ideal, Georgian Math. J. 12 (2005), no. 3, 423–429.
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc. 75 (2007), no. 3, 417–429.
- [3] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. to appear.
- [4] A. Badawi, U. Tekir, E. Ugurlu, G. Ulucak, and E. Yetkin, Generalizations of 2absorbing primary ideals of commutative rings, Turk. J. Math. 40 (2016), no. 3, 703–717.
- [5] A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173.
- [6] _____, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. **52** (2015), no. 1, 97–111.
- [7] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011), no. 3, 577–584.
- [8] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831–840.
- [9] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), no. 1, 3–56.
- [10] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646–1672.
- [11] J. A. Huckaba, Commutative Rings with Zero-Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., Now York, 1988.
- [12] S. Moradi and A. Azizi, Weakly 2-absorbing submodules of modules, Turk. J. Math. 40 (2016), no. 2, 350–364.
- [13] H. Mostafanasab and A. Y. Darani, On ϕ -n-absorbing primary ideals in commutative rings, arXiv:1503.00108v1(2015).

- [14] H. Mostafanasab, E. Yetkin, U. Tekir, and A. Y. Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Şt. Univ. Ovidius Constanţa 24 (2016), no. 1, 335–351.
- [15] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. **52** (1975), 91–96.

AHMAD YOUSEFIAN DARANI

Department of Mathematics

FACULTY OF SCIENCE

University of Mohaghegh Ardabili

 ${\rm P.O.~Box~179,~Ardebil,~Iran}$

 $E\text{-}mail\ address: \verb"yousefian@uma.ac.ir", youseffian@gmail.com"}$

FATEMEH SOHEILNIA

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

University of Mohaghegh Ardabili

P.O. Box 179, Ardebil, Iran

 $E\text{-}mail\ address{:}\ \mathtt{soheilnia@gmail.com}$

Unsal Tekir

DEPARTMENT OF MATHEMATICS

MARMARA UNIVERSITY

ZIVERBEY, 34722, GOZTEPE, ISTANBUL, TURKEY

 $E ext{-}mail\ address: utekir@marmara.edu.tr}$

Gulsen Ulucak

DEPARTMENT OF MATHEMATICS

GEBZE TECHNICAL UNIVERSITY

P.K 41400, Gebze-Kocaeli, Turkey

E-mail address: gulsenulucak@gtu.edu.tr