DOI QR코드

DOI QR Code

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng (Department of Mathematics Shanghai Normal University) ;
  • Heidarkhani, Shapour (Department of Mathematics Faculty of Sciences Razi University) ;
  • Kou, Kit Ian (Department of Mathematics Faculty of Science and Technology University of Macau) ;
  • Salari, Amjad (Department of Mathematics Faculty of Sciences Razi University)
  • Received : 2016.08.29
  • Accepted : 2017.02.02
  • Published : 2017.09.01

Abstract

This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, University of Macau

References

  1. C.O. Alves, F. S. J. A. Correa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), no. 4, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  3. A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305-330. https://doi.org/10.1090/S0002-9947-96-01532-2
  4. G. Autuori, F. Colasuonno, P. Pucci, Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Equ. 57 (2012), no. 2-4, 379-395. https://doi.org/10.1080/17476933.2011.592584
  5. G. Autuori, F. Colasuonno, P. Pucci, Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci. 22 (2012), no. 2, 1150009, 36 pp.
  6. G. Autuori, F. Colasuonno, P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math. 16 (2014), no. 5, 1450002, 43 pp.
  7. J. V. Baxley, A singular nonlinear boundary value problem: membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), no. 3, 497-505. https://doi.org/10.1137/0148028
  8. G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), no. 5, 2992-3007. https://doi.org/10.1016/j.na.2011.12.003
  9. G. Bonanno, G. Molica Bisci, and V. Radulescu, Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems, Adv. Nonlinear Stud. 13 (2013), no. 2, 373-389. https://doi.org/10.1515/ans-2013-0207
  10. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64. https://doi.org/10.1016/0362-546X(86)90011-8
  11. L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275.
  12. F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existstence (and non existstence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), no. 2, 229-258. https://doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
  13. M. Chipot and B. Lovat, Some remarks on non local elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 7, 4619-4627.
  14. J. Chu, N. Fan, and P. J. Torres, Periodic solutions for second order singular damped differential equations, J. Math. Anal. Appl. 388 (2012), no. 2, 665-675. https://doi.org/10.1016/j.jmaa.2011.09.061
  15. J. Chu, S. Heidarkhani, A. Salari, and G. Caristi, Weak solutions and energy estimates for singular p-Laplacian type equations, preprint.
  16. J. Chu, P. J. Torres, and F. Wang, Twist periodic solutions for differential equations with a combined attractive-repulsive singularity, J. Math. Anal. Appl. 437 (2016), no. 2, 1070-1083. https://doi.org/10.1016/j.jmaa.2016.01.057
  17. J. Chu, P. J. Torres, and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations 239 (2007), no. 1, 196-212. https://doi.org/10.1016/j.jde.2007.05.007
  18. N. T. Chung and Q. A. Ngo, A multiplicity result for a class of equations of p-Laplacian type with sign-changing nonlinearities, Glasg. Math. J. 51 (2009), no. 3, 513-524. https://doi.org/10.1017/S001708950900514X
  19. N. T. Chung and H. Q. Toan, Solutions of elliptic problems of p-Laplacian type in a cylindrical symmetric domain, Acta Math. Hungar. 135 (2012), no. 1-2, 42-55. https://doi.org/10.1007/s10474-011-0163-6
  20. N. T. Chung and H. Q. Toan, Multiple solutions for a class of degenerate nonlocal problems involving sublinear nonlinearities, Matematiche (Catania) 69 (2014), no. 2, 171-182.
  21. F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. 74 (2011), no. 17, 5962-5974. https://doi.org/10.1016/j.na.2011.05.073
  22. G. D'Agui, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math. 2 (2011), no. 2, 237-248. https://doi.org/10.1515/APAM.2010.043
  23. D. M. Duc and N. Thanh Vu, Nonuniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 61 (2005), no. 8, 1483-1495. https://doi.org/10.1016/j.na.2005.02.049
  24. M. Galewski and G. Molica Bisci, Existence results for one-dimensional fractional equations , Math. Methods Appl. Sci. 39 (2016), no. 6, 1480-1492. https://doi.org/10.1002/mma.3582
  25. J. R. Graef, S. Heidarkhani, and L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), no. 3-4, 877-889. https://doi.org/10.1007/s00025-012-0238-x
  26. X. He and W. Zou, Multiple solutions for the Brezis-Nirenberg problem with a Hardy potential and singular coefficients, Comput. Math. Appl. 56 (2008), no. 4, 1025-1031. https://doi.org/10.1016/j.camwa.2008.01.029
  27. X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), no. 3, 1407-1414. https://doi.org/10.1016/j.na.2008.02.021
  28. X. He and W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser. 26 (2010), no. 3, 387-394. https://doi.org/10.1007/s10255-010-0005-2
  29. S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems, Ann. Polon. Math. 107 (2013), no. 2, 133-152. https://doi.org/10.4064/ap107-2-3
  30. G. Kirchhoff, Vorlesungen uber mathematische Physik, Mechanik, Teubner, Leipzig, 1883.
  31. A. Kristaly, H. Lisei, and C. Varga, Multiple solutions for p-Laplacian type equations, Nonlinear Anal. 68 (2008), no. 5, 1375-1381. https://doi.org/10.1016/j.na.2006.12.031
  32. S.-S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), no. 3, 283-297. https://doi.org/10.1016/0362-546X(91)90229-T
  33. J. L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), pp. 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.
  34. A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff-type problems without the P.S. condition, Nonlinear Anal. 70 (2009), no. 3, 1275-1287. https://doi.org/10.1016/j.na.2008.02.011
  35. G. Molica Bisci and D. Repovs, Nonlinear Neumann problems driven by a nonhomogeneous differential operator, Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) (2014), no. 1, 13-25.
  36. D. Motreanu and V. Radulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Nonconvex Optimization and Applications, Kluwer Academic Publishers, 2003.
  37. K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, 246-255. https://doi.org/10.1016/j.jde.2005.03.006
  38. P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), no. 1, 142-149. https://doi.org/10.1016/0022-0396(85)90125-1
  39. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
  40. B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543-549. https://doi.org/10.1007/s10898-009-9438-7
  41. J. Tyagi, Existence of nontrivial solutions for singular quasilinear equations with sign changing nonlinearity, Electron. J. Differential Equations 2010 (2010), no. 117, 9 pp.
  42. B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electron. J. Differential Equations 2004 (2004), no. 16, 11 pp.
  43. Z. Yang, D. Geng, and H. Yan, Three solutions for singular p-Laplacian type equations, Electron. J. Differential Equations 2008 (2008), no. 61, 12 pp.