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ENUMERATION OF GRAPHS AND THE

CHARACTERISTIC POLYNOMIAL OF THE

HYPERPLANE ARRANGEMENTS Jn

Joungmin Song

Abstract. We give a complete formula for the characteristic polynomial
of hyperplane arrangements Jn consisting of the hyperplanes xi+xj = 1,
xk = 0, xl = 1, 1 ≤ i, j, k, l ≤ n. The formula is obtained by associat-
ing hyperplane arrangements with graphs, and then enumerating central
graphs via generating functions for the number of bipartite graphs of
given order, size and number of connected components.

1. Introduction and preliminaries

In this paper, we give a complete formula for the characteristic polynomial
of the hyperplane arrangement Jn consisting of

(1) the walls or hyperplanes of type I:

Hαβ = {x ∈ R
n |xα + xβ = 1} = Hβα, 1 ≤ α, β ≤ n;

(2) the walls of type II:

0i := {x ∈ R
n |xi = 0}, and 1i := {x ∈ R

n|xi = 1}, ∀i ∈ [n] := {1, 2, . . . , n}.

This particular hyperplane arrangement was first considered in [8] where the
key idea of associating the sub-arrangements of Jn with certain colored graphs
was developed, and a few basic examples were worked out. We further advanced
the method in the subsequent papers [6, 7], and with the complete formula for
the characteristic polynomial, we accomplish the eventual goal of the project
which is to give an explicit formula for the number of chambers via graph
theory.

There are a few powerful methods for computing the characteristic poly-
nomial of hyperplane arrangements. In [1], Athanasiadis showed that simply
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by computing the number of points missing the hyperplanes (over finite fields)
and by using the Möbius formula, the characteristic polynomials of many hy-
perplane arrangements can be computed. Our subject of interest Jn is not
among the classes of examples considered in [1] and it is indeed not even a
deformation of them. Our method is closer in spirit to [12–14] in which Za-
slavsky gives a geometric interpretation of the number of acyclic orientations
of all k-node contractions of a graph as the number of codimension k faces of
the associated hyperplane arrangement. This leads him to conclude that the
number of regions given by a hyperplane arrangement can be computed by the
chromatic polynomial of the associated signed graph. In [13], he works out
the case of complete graphs which are associated to the classical root system
arrangements. We shall further investigate the relation between our method
and the existing methods in a forthcoming work.

For the sake of completeness, we shall briefly recall the basic definitions and
main results from our previous papers [6–8]. A hyperplane arrangement B is
said to be central if the intersection of all hyperplanes in B is nonempty. The
rank of a hyperplane arrangement is the dimension of the space spanned by
the normal vectors to the hyperplanes in the arrangement. The characteristic

polynomial of an arrangement A is defined

χA(t) =
∑

B

(−1)|B|tn−rank (B),

where B runs through all central subarrangements of A. The importance of
this polynomial is revealed in one of the most fundamental theorems in the
theory of hyperplane arrangements:

Theorem 1 ([11]). Let A be a hyperplane arrangement in an n-dimensional

real vector space. Let r(A) be the number of chambers and b(A) be the number

of relatively bounded chambers. Then we have

(1) b(A) = (−1)nχ(+1).
(2) r(A) = (−1)nχ(−1).

In [8], we considered 3-colored graphs on the vertex set [n] = {1, 2, . . . , n},
and defined the centrality of graphs by specifying the parity of the paths be-
tween two given colored vertices. To a hyperplane arrangement A, we corre-
sponded the graph ΓA whose vertex set is

I(A) =





⋃

Hij∈A

{i, j}



 ∪

(

⋃

0α∈A

{α}

)

∪





⋃

1β∈A

{β}



,

the edge set is {{i, j} | Hij ∈ A}, and its vertex i is colored 0 or 1 or ∗
respectively if 0i ∈ A or 1i ∈ A, or 0i, 1i 6∈ A respectively. The main theorem
that begun it all is:

Theorem 2 ([8]). A is central if and only if ΓA is central.
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This further lead our investigation to procure methods of enumerating cen-
tral graphs. In the main theorem of [6], we gave a formula for the coefficients of
χJn

in terms of the number of connected graphs and the number of connected
bipartite graphs of given order and size. In [7], we gave a full description of the
number of bipartite graphs using the Exponential Formula [9, Corollary 5.1.6].
Enumeration of bipartite graphs have been studied by many authors ([2–5,9,10]
to name just several), but our search did not turn up a comprehensive list of
the number of bipartite graphs of give order, size and number of connected
components. By combining the main results of [6] and [7], we are now able to
give a complete generating function for the coefficients of χJn

.

Our two main results are as follows. Let γ̄
(0)
r,c denote the number of con-

nected, non-colored, bipartite graphs without isolated vertices whose rank and
cardinality are r and c. Let b̄n,k be the number of connected bipartite graphs
of order n and size k.

Theorem 1.1. The generating function for the number of central graphs is

given by

Γ(x, y, z)

= exp









1

2
log



1 +
∑

n≥1,k≥0

n
∑

i=0

(

n

i

)(

i(n− i)

k

)

1

n!
xnyk



− x





z

x





·

(

∞
∑

r=0

2r

r!
xryr

)

·

(

∑

(

c−r
∑

t=1

2γ
(0)
r−1,c−t

(

r

t

)

)

1

r!
xryc

)

·



exp



log



1 +
∑

n≥1,k≥0

(
(

n
2

)

k

)

1

n!
xnyk



− x



 −
∑

n≥2,k≥1

b̄n,k
1

n!
xnyk



 .

Theorem 1.2. The characteristic polynomial of Jn is given by

χJn
(t) =

n
∑

r=0





∑

c≥1

∑

r+ν≤n

(

n

r + ν

)

(−1)c Γr,c,ν



 tn−r,

where Γr,c,ν is determined by Γ(x, y, z) =
∑

r,c,ν≥0

Γr,c,ν

(r+ν)!x
ryczν.

Principal ideas and results on generating functions are verified in Section 3.
They lead to the proof of the main theorem in Section 4.

Note that Theorem 1.2 is readily applicable. We demonstrate the use of the
formula for small values of n. The table of characteristic polynomials for n = 3
up to n = 10 is provided. To automate the process, Mathematica software is
employed.
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2. Decomposition of central graphs

We recall definitions and key notions from [6] and set up the necessary
notations. Given a 3-colored central graph G, we have a unique decomposition

G =
3
∐

i=0

G(i)

into four different types of subgraphs: a 3-colored graph is of type (i) if

(i = 0) non-colored, bipartite, without isolated vertices;
(i = 1) non-colored, non-bipartite, without isolated vertices;
(i = 2) totally disconnected and every vertex is colored;
(i = 3) every vertex has a path to a colored vertex.

This decomposition plays an important role in the proof of the main theorem
of [8], and it will again be crucial in proving the main theorem of this article.

Definition. (1) γ
(0)
r,c,ν = number of type (0) graphs of rank r, cardinality

c, and with ν connected components and no isolated vertices;

(2) γ
(i)
r,c = number of type (i) graphs of rank r, cardinality c, and without

isolated non-colored vertices, i = 0, . . . , 3. Note that γ
(0)
r,c =

∑

ν γ
(0)
r,c,ν ;

(3) γ
(i)
r,c = number of connected type (i) graphs of rank r and cardinality

c, i = 0, . . . , 3;

(4) Γ(0) =
∑

r,c,ν≥0

γ(0)
r,c,ν

(r+ν)!x
ryczν .

(5) Γ(i) =
∑

r,c≥0

γ(i)
r,c

r! x
ryc, i = 1, 2, 3;

Remark 2.1. (1) Note that the type zero subgraphs deserve special treatment
because they are the only ones that may fail to have full rank.

(2) Since type (2) graphs are totally disconnected, γ
(2)
r,c =

{

0 r 6= c,

2r r = c.

Proposition 1. Γ :=
∏3

i=0 Γ
(i) is the generating function for the number of

central graphs of given rank and cardinality. That is, if

Γ(x, y, z) =
∑

n,k,ν≥0

Γn,k,ν

(n+ ν)!
xnykzν,

then Γn,k,ν is the number of central graphs of rank n and cardinality k with ν
bipartite components. In particular,

∑

ν Γn,k,ν is the number of central graphs

of rank n and cardinality k.

Proof. Let n, k, ν be given. It suffices to compute the number of central graphs
G of rank n, cardinality k with ν bipartite components whose type (i) subgraph
has rank ni and cardinality ki. For i 6= 0, G(i) is of full rank and is of order ni.
The type (0) subgraph is bipartite and its order is the sum of its rank and the
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number of components [6, Theorem 2]. Hence such a graph would be of order
n+ ν.

To count the number of graphs G satisfying the conditions above, we first
partition [n+ν] into four sets Vi of vertices such that |V0| = n0+ν and |Vi| = ni,
i = 1, 2, 3. There are

(

n+ν
n0+ν,n1,n2,n3

)

many such partitions. On each fixed Vi,

there exist γ
(i)
ni,ci possible graphs of type (i), i 6= 0, and γ

(0)
n0,c0,ν many bipartite

graphs on V0 with ν connected components.
All in all, the number of central graphs of rank n and cardinality k is

∑

ν,ni,ki

(

n+ ν

(n0 + ν)n1 n2 n3

)

γ
(0)
n0,k0,ν

3
∏

i=1

γ
(i)
ni,ki

,

where the sum runs over ν ∈ Z and all partitions n =
∑3

i=0 ni and k =
∑3

i=0 ki.

General terms of Γ(i) are of the form xn0yk0zν for i = 0 and xniyki for i 6= 0.

Hence xnykzν coefficient
Γn,k,ν

(n+ν)! of Γ equals the sum of
γ
(0)
n0,k0,ν

(n0+ν)!

∏3
i=1

γ
(i)
ni,ki

ni!
such

that n =
∑

ni and k =
∑

ki. Since
(

n+ν
(n0+ν)n1 n2 n3

)

= (n+ν)!
(n0+ν)!n1!n2!n3!

, the

assertion follows. �

3. Generating functions

3.1. Generating function for γ
(0)
r,c,ν

In [7], we have computed the generating function for the number of bipar-
tite graphs of given order, size and number of connected components. Here, we
modify it slightly to remove the contribution from isolated vertices and trans-
late the information of order and number of connected components to the rank
of the graph.

Let’s recall from [7] the generating function for the number of connected
bipartite graphs of given order, size and number of connected components. The
number b̄n,k of connected bipartite graphs of order n and size k is generated
by half of the formal logarithm of

(3.1) 1 +
∑

n≥1,k≥0

n
∑

i=0

(

n

i

)(

i(n− i)

k

)

1

n!
xnyk,

i.e., its xayb coefficient multiplied by a! gives the number of connected bipartite
graphs of order a and size b. Let

F(x, y, z) = exp





∑

n≥2;k≥1

b̄n,k
n!

xnykz



 .

Then the xnykzν-coefficient of F multiplied by n! is the number of order n,
size k bipartite graphs with ν connected components ([9, Example 5.2.2]. See
also [7]). Note that n ≥ 2, k ≥ 1 since type (0) central graphs do not have
isolated vertices.
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Since the rank of bipartite graph equals the order minus the number of
components, we conclude that the xrykzν coefficient of F(x, y, z/x) multiplied
by (r + ν)! equals the number of type (0) central graphs of rank r, size k with
ν connected components. We put this neatly into a proposition:

Proposition 2 (Generating function for type (0) graphs). Γ0(x, y, z) is given

by

exp









1

2
log



1 +
∑

n≥1,k≥0

n
∑

i=0

(

n

i

)(

i(n− i)

k

)

1

n!
xnyk



− x





z

x



 .

3.2. Generating function for γ
(1)
r,c

By definition, γ
(1)
r,c is obtained by subtracting γ

(0)
r,c from the number γ′

r,c of
all non-colored graphs of rank r and size c without isolated vertices.

Lemma 3.1. The number of non-colored graphs of given order and size, and

without isolated vertices is generated by

exp



log



1 +
∑

n≥1,k≥0

(
(

n
2

)

k

)

1

n!
xnyk



− x



 .

See, for instance, [7] for a proof of the lemma above.
The number b̄n,k of bipartite graphs of order n and size k is computed by

Equation (3.1). Hence we have:

Proposition 3. The number of type (1) graphs of given order and size is

generated by

Γ(1)(x, y) := exp



log



1 +
∑

n≥1,k≥0

(
(

n
2

)

k

)

1

n!
xnyk



−x



−
∑

n≥2,k≥1

b̄n,k
1

n!
xnyk.

Since type (1) graphs are of full rank, Γ(1)(x, y) precisely generates the
number of type (1) graphs of given rank and size.

3.3. Generating function for γ
(2)
r,c

Proposition 4. The number of type (2) graphs of given order and size is

generated by

Γ(2)(x, y) =

∞
∑

r=0

2r

r!
xryr.
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3.4. Generating function for γ
(3)
r,c

Since connected type (0) or equivalently, bipartite graphs are of rank one
less than the order, [6, Proposition 3] may be re-written as

γ(3)
r,c =

c−r+1
∑

t=1

2γ
(0)
r−1,c−t

(

r

t

)

.

Lemma 3.2. Γ(3)(x, y) is given by expΓ
(3)

where

Γ
(3)

(x, y) =
∑ γ

(3)
r,c

r!
xryc

=
∑

(

c−r+1
∑

t=1

2γ
(0)
r−1,c−t

(

r

t

)

)

1

r!
xryc.

Proof. The proof is a fairly straightforward application of the Exponential For-
mula [9, Corollary 5.1.6]. Let G be a type (3) graph, and consider its decom-
position

∐

Gi into connected components, which are again of type (3). Since
type (3) graphs are always of full rank, the rank equals the order. We may now
apply the Exponential Formula to obtain the assertion. �

Now we gather the results of the section to give the full generating function
for the number of central graphs:

Theorem 1. The generating function for the number of central graphs is given

by

Γ(x, y, z)

= exp









1

2
log



1 +
∑

n≥1,k≥0

n
∑

i=0

(

n

i

)(

i(n− i)

k

)

1

n!
xnyk



− x





z

x





·

(

∞
∑

r=0

2r

r!
xryr

)

·

(

∑

(

c−r
∑

t=1

2γ
(0)
r−1,c−t

(

r

t

)

)

1

r!
xryc

)

·



exp



log



1 +
∑

n≥1,k≥0

(
(

n
2

)

k

)

1

n!
xnyk



− x



 −
∑

n≥2,k≥1

b̄n,k
1

n!
xnyk



 .

4. The characteristic polynomial of Jn

In this section, we formulate the characteristic polynomial χJn
. By the

implication of the main theorem of [8], the tn−r-coefficient of χJn
equals the

sum
∑

c

(−1)cγr,c,
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where γr,c is the number of central 3-colored graphs on [n] of rank r and
cardinality c. We have

Theorem 2. The characteristic polynomial of Jn is given by

χJn
(t) =

n
∑

r=0





∑

c≥1

∑

r+ν≤n

(

n

r + ν

)

(−1)c Γr,c,ν



 tn−r.

Proof. We note that the coefficient Γr,c,ν is the number of central graphs on
[r+ν], as opposed to [n], of rank r, cardinality c with ν connected components.
So we have

γr,c =
∑

r+ν≤n

(

n

r + ν

)

Γr,c,ν.
�

The characteristic polynomials of J2 and of J3 were computed by hand in
[8]. Here, we use the generating function to verify the computation.

For n = 2,

Γ = Γ0Γ2Γ3

=
(xyz

2
+ 1
)

(

2x2y2 + 4xy + 1
) (

x2y3 + 2x2y2 + 1
)

.

Note that Γ1 is trivial. The corresponding characteristic polynomial is t2−5t+6,
obtained by using Theorem 1.2.

For n = 3, the generating function for the central graphs corresponding to
J3 is

Γ = Γ0Γ1Γ2Γ3

=

(

1

48
x3y3z3 +

1

4
x3y3z2 +

1

8
x2y2z2 +

1

2
x2y2z +

xyz

2
+ 1

)

·

(

x3y3

6
+ 1

)(

4x3y3

3
+ 2x2y2 + 2xy + 1

)

·
(

x3y5 + 3x3y4 + 3x3y3 + x2y3 + 2x2y2 + 1
)

.

Using Theorem 1.2, we find that

χJ3(t) = t3 − 9t2 + 27t− 27

which agrees with the computation in [8].

Appendix

Numerical results

With the aid of Mathematica, we computed, with increasing running time,
characteristic polynomials of higher order. We list below characteristic poly-
nomials of degrees up to n = 10.

χJ2(t) = t2 − 5t+ 6,
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χJ3(t) = t3 − 9t2 + 27t− 27,

χJ4(t) = t4 − 14t3 + 75t2 − 168t+ 104,

χJ5(t) = t5 − 20t4 + 165t3 − 695t2 + 1465t− 3649,

χJ6(t) = t6 − 27t5 + 315t4 − 2010t3 + 7365t2 − 9285t+ 97605,

χJ7(t) = t7 − 35t6 + 546t5 − 4865t4 + 26565t3 − 92386t2− 252245t− 3082889,

χJ8(t) = t8 − 44t7 + 882t6 − 10402t5 + 78365t4 − 382662t3 + 1959447t2

+ 22977452t+ 104683724,

χJ9(t) = t9 − 54t8 + 1350t7 − 20286t6 + 200403t5 − 1338708t4 + 8421021t3

+ 105101892t2 + 1112954274t+ 866974176,

χJ10(t) = t10 − 65t9 + 1980t8 − 36840t7 + 460215t6 − 4008081t5 + 24881535t4

+ 52962615t3 + 7605232140t2 + 71654230070t+ 142378721936.

According to Theorem 1, the number of bounded chambers in R
n divided

by hyerplanes in Jn are:

n (−1)nχJn
(−1) n (−1)nχJn

(−1)
3 64 7 170770
4 362 8 84138075
5 5995 9 150860029
6 116608 10 78306150108
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