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A NEW FAMILY OF FUBINI TYPE NUMBERS AND

POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI

NUMBERS AND POLYNOMIALS

Neslihan Kilar and Yilmaz Simsek

Abstract. The purpose of this paper is to construct a new family of the
special numbers which are related to the Fubini type numbers and the
other well-known special numbers such as the Apostol-Bernoulli numbers,
the Frobenius-Euler numbers and the Stirling numbers. We investigate
some fundamental properties of these numbers and polynomials. By using
generating functions and their functional equations, we derive various
formulas and relations related to these numbers and polynomials. In order
to compute the values of these numbers and polynomials, we give their
recurrence relations. We give combinatorial sums including the Fubini
type numbers and the others. Moreover, we give remarks and observation
on these numbers and polynomials.

1. Introduction

In this section we introduce some generating functions for some special num-
bers and polynomials with their recurrence relations and other well-known
properties. By using generating function and functional equation method, we
derive our relations and identities.

We start to give some useful and well-known numbers and polynomials,
which have many applications in almost all branches of mathematics and also
mathematical physics.

The Bernoulli polynomials Bn(x) are defined by means of the following gen-
erating functions (cf. [1]-[33]; see also the references cited in each of these earlier
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works):

(1)
t

et − 1
ext =

∞
∑

n=0

Bn(x)
tn

n!
,

where |t| < 2π. By (1), one can easily deduce the following formula:

(2) Bn(x) =

n
∑

k=0

(

n

k

)

xn−kBk,

where Bk denote the Bernoulli numbers, which are defined by the following
recurrence relation:

B0 = 1 and

n−1
∑

k=0

(

n

k

)

Bk = 0 (n ∈ N \ {1}) .

One can also easily see that

Bn = Bn(0) (n ∈ N0)

(cf. [1]-[33]; see also the references cited in each of these earlier works).
Here and in the following, let C, N, and N0 be the sets of complex numbers,

positive integers, and non-negative integers, respectively.
The other famous family is the Apostol-Bernoulli polynomials Bn(x, λ),

which are defined by means of the following generating function ([2]):

(3)

text

λet − 1
=

∞
∑

n=0

Bn(x, λ)
tn

n!

(|t| < 2π if λ = 1; |t| < |log λ| if λ 6= 1 and λ ∈ C).

From this equation, one can easily see that

Bn(x) = Bn(x, 1)

and
Bn(λ) = Bn(0, λ),

where Bn(λ) denotes so-called the Apostol-Bernoulli numbers (cf. [1]-[33]; see
also the references cited in each of these earlier works).

In work of Apostol [2] and by equation (3), we have the following properties:
For n ≥ 1, we have

λBn(x+ 1, λ)− Bn(x, λ) = nxn−1.

Substituting x = 0 and n = 1 into the above equation, one can easily see
that

(4) λB1(1, λ) = 1 + B1(λ).

If n ≥ 2, one can see that

(5) λBn(1, λ) = Bn(λ)

(cf. [2]).
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For x = 0 and n = 0, 1, 2, 3, 4, . . ., one can compute a few values of the
Apostol-Bernoulli numbers given by equation (3) as follows:

B0(λ) = 0,

B1(λ) =
1

λ− 1
,

B2(λ) = −
2λ

(λ− 1)2
,

B3(λ) =
3λ(λ+ 1)

(λ− 1)3
,

B4(λ) = −
4λ(λ2 + 4λ+ 1)

(λ− 1)4
.

Recently, not only the Bernoulli polynomials and numbers, but also the
Apostol-Bernoulli polynomials and numbers have been studied by many au-
thors with various methods and techniques. There are also many type gener-
alizations of these polynomials and numbers.

The Apostol-Bernoulli polynomials B
(m)
n (x, λ) of order m are defined by

means of the following generating function:

(6)

(

t

λet − 1

)m

ext =

∞
∑

n=0

B(m)
n (x, λ)

tn

n!
,

where | t+ lnλ |< 2π; 1m = 1. We also see that

B(m)
n (x) = B(m)

n (x, 1)

and
B(m)
n (λ) = B(m)

n (0, λ),

where B
(m)
n (λ) denote the so-called Apostol-Bernoulli numbers of orderm ([16],

[17], [23]). By using (6), one can see that

(7) λB(m)
n (x + 1, λ)− B(m)

n (x, λ) = nB
(m−1)
n−1 (x, λ)

and also

(8) B(m)
n (x, λ) =

n
∑

k=0

(

n

k

)

B
(m)
k (λ)xn−k.

The Eulerian numbers or Frobenius-Euler numbers are defined by means of
the following generating function:

(9)
1− u

et − u
=

∞
∑

n=0

Hn(u)
tn

n!
,

where u 6= 1 (cf. [7], [11], [13], [14], [15], [25], [26], [27], [29], [30], [31], [34]; see
also the references cited in each of these earlier works). Substituting u = −1,
into (9), we have

Hn(−1) = En,
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where En denote Euler numbers of the first kind defined by means of the
following generating function:

(10)
2

et + 1
=

∞
∑

n=0

En

tn

n!
,

where |t| < π (cf. [7], [11], [13], [14], [15], [25], [26], [27], [29], [30], [31], [34]; see
also the references cited in each of these earlier works).

The Stirling numbers of the second kind are defined by means of the following
generating function:

(11) Fs(t,m) =
(et − 1)

m

m!
=

∞
∑

n=0

S2 (n,m)
tn

n!
.

By using this generating function, we have

S2 (n,m) =
1

m!

m
∑

k=0

(−1)k
(

m

k

)

(m− k)n ,

S2 (n, n) = 1 (n ∈ N0) ,

S2 (n, 0) = 0 (n ∈ N)

and

S2 (n,m) = 0 (m > n) .

(cf. [1]-[33]; see also the references cited in each of these earlier works).
Now we recall another numbers which are related to the Apostol-Bernoulli

numbers. The Fubini numbers wg(n) are defined by means of the following
generating function [12]:

(12)
1

2− et
=

∞
∑

n=0

wg(n)
tn

n!
,

where wg(0) = 1 and |t| < ln 2.
The nth Fubini numbers were defined in [10], [12], and [19] as the number

of ways of writing an nth multiple integral. Or, in combinatoric applications,
equivalently, these numbers can be defined as the number of order partition of
nonempty subset of {1, 2, 3, . . . , n}.

Muresan [19, p. 397] defined the Fubini type numbers by means of the fol-
lowing generating function:

(13) FM (t) =
et − 1

2− et
=

∞
∑

n=0

wM (n)
tn

n!

(cf. [10], [12], [19]; see also the references cited in each of these earlier works).
In (13), we see that

wM (0) = 0.
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Belbachir et al. [4] modified the numbers wg(n). They defined a new family
of the numbers, an. These numbers are related to the Apostol-Bernoulli num-
bers of order 2 and the Fubini numbers wg(n). A generating function for the
numbers an have been defined by

(14)
2

(2 − et)2
=

∞
∑

n=0

an
tn

n!
.

By using (14), we have a few values as follows:

a0 = 2, a1 = 4, a2 = 16, a3 = 88, a4 = 616, . . . .

The generalized Fubini numbers fn,k are defined by means of following gen-
erating function (cf. [19]):

(15) Fk(t) =
et − 1

k + 1− ket
=

∞
∑

n=1

fn,k
tn

n!
.

It obvious that fn,1 = wM (n) for all n ∈ N0 and f0,k = 1.
Some values of generalized Fubini numbers are listed in the following table

(cf. [19]):

Table 1. Generalized Fubini numbers fn,k

n�
k 1 2 3 4

1 1 1 1 1
2 3 5 7 9
3 13 37 73 121
4 75 365 1015 2169
5 541 4501 17641 48601

We now summarize our paper as follows:
In Section 1, we look for some properties of the numbers wg(n) and wM (n).

We give some formulas and relations related to these numbers and the other spe-
cial numbers. We also give relationships between the numbers wg(n), wM (n),
Bernoulli numbers, Apostol-Bernoulli numbers, Apostol-Bernoulli polynomials,
Frobenius-Euler numbers and Stirling numbers.

In Section 2, we define a new family of polynomials a
(l)
n (x) and new family

of numbers. We investigate their properties and relations.
In Section 3, by using generating functions and their functional equations,

we derive many novel identity and relations including the Apostol-Bernoulli
numbers and polynomials, the Stirling numbers of the second kind and the
Fubini type numbers and polynomials.

In Section 4, by applying the Riemann integral to our identities and relations
in Section 2, we derive combinatorial sums including the Fubini type numbers
and the Apostol-Bernoulli numbers.
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2. Relationship between the numbers wg(n) and wM(n)

In this section we investigate some properties of the numbers wg(n) and
wM (n). We give some formulas and relation related to these numbers and the
other special numbers.

We give a relationship between the numbers wg(n) and wM (n). Combining
(12) with (13), we get

∞
∑

n=0

wM (n)
tn

n!
=
(

et − 1
)

∞
∑

n=0

wg(n)
tn

n!
.

From this equation, we obtain

∞
∑

n=0

wM (n)
tn

n!
=

∞
∑

n=0

tn

n!

∞
∑

n=0

wg(n)
tn

n!
−

∞
∑

n=0

wg(n)
tn

n!
.

Therefore

∞
∑

n=0

wM (n)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

wg(k)− wg(n)

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we obtain
an interesting identity asserted by the following theorem.

Theorem 2.1. Let n be a positive integer. Then we have

(16) wM (n) =
n−1
∑

k=0

(

n

k

)

wg(k).

By using generating functions (3) with x = 0 and (12), we derive a relation
between the Apostol-Bernoulli numbers, Bn(λ) and the Fubini numbers wg(n)
are given as follows:

(17) Bn

(

1

2

)

= −2nwg(n− 1).

We observe that the Fubini numbers wg(n) are related to the Frobenius-Euler
numbers. That is

wg(n) = Hn(2).

By substituting (17) into (16), we obtain a relation between the numbers wM (n)
and Bn

(

1
2

)

by the following proposition:

Proposition 2.2.

wM (n) = −
1

2

n−1
∑

k=0

(

n

k

)

1

k + 1
Bk+1

(

1

2

)

.
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Comtet [10] raised the following question concerning the Fubini numbers
and the Stirling numbers of the second kind:

wg(n) =
n
∑

k=0

k!S2(n, k).

We briefly glance exercise from Comtet’s [10, p. 228, Exercise 20]. In order to
solve this exercise, we use (12). Firstly, we assume that |et − 1| < 1 in (12),
thus we get

∞
∑

n=0

wg(n)
tn

n!
=

∞
∑

k=0

(et − 1)k.

Combining (11) with the above equation, we have

∞
∑

n=0

wg(n)
tn

n!
=

∞
∑

k=0

∞
∑

n=0

k!S2(n, k)
tn

n!
.

Since n < k, S2(n, k) = 0, we deduce the above equation

∞
∑

n=0

wg(n)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

k!S2(n, k)

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we a
solution of the exercise from Comtet’s:

wg(n) =
n
∑

k=0

k!S2(n, k).

By using this identity, we also give an explicit formula for the numbers
wM (n) as follows:

Theorem 2.3.

wM (n) =

n−1
∑

k=0

k
∑

j=0

j
∑

l=0

(−1)l
(

n

k

)(

j

l

)

(j − l)k .

3. A new family of polynomials and numbers

In this section, we define a new family of polynomials a
(l)
n (x) by means of

the following generating function:

(18) Fa(x; t, l) =
2l

(2− et)2l
ext =

∞
∑

n=0

a(l)n (x)
tn

n!
,

where l ∈ N0 and | t |< ln 2.
By (18), we have

a(l)n (0) = a(l)n
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which denote Fubini type numbers of order l. In next section, we show that
these numbers are related to the Apostol-Bernoulli numbers. Substituting x =
0 and l = 1 into (18), we get

a(1)n = an.

The numbers a
(l)
n are defined by means of the following generating function:

(19) Fa(t, l) =
2l

(2− et)2l
=

∞
∑

n=0

a(l)n

tn

n!
.

Theorem 3.1. The following identity holds true:

(20) a(u+v)
n =

n
∑

k=0

(

n

k

)

a
(u)
k a

(v)
n−k (u, v ∈ N) .

Proof. By (19), we derive the following functional equation:

Fa(t, u+ v) = Fa(t, u)Fa(t, v).

From this equation, we obtain
∞
∑

n=0

a(u+v)
n

tn

n!
=

∞
∑

n=0

a(u)n

tn

n!

∞
∑

n=0

a(v)n

tn

n!
.

Therefore
∞
∑

n=0

a(u+v)
n

tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

a
(u)
k a

(v)
n−k

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

For n = 0, 1, 2, 3, 4, 5, . . ., we compute a few values of the numbers a
(l)
n given

by equation (20) as follows:

Table 2. Some values of the numbers a
(l)
n

n�
l 1 2 3 4 5

0 2 4 8 16 32
1 4 16 48 128 320
2 16 96 384 1280 3840
3 88 736 3744 15104 53120
4 616 6816 42720 204032 827520
5 5224 73696 556128 3093248 14288000

Theorem 3.2. The following identity holds true:

(21) a(l)n (x) =

n
∑

k=0

(

n

k

)

a
(l)
k xn−k (l ∈ N0) .
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Proof. By (18) and (19), we get

∞
∑

n=0

a(l)n (x)
tn

n!
=

∞
∑

n=0

a(l)n

tn

n!

∞
∑

n=0

xn t
n

n!
.

Therefore
∞
∑

n=0

a(l)n (x)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

a
(l)
k xn−k

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

We now define the generalized Fubini numbers f
(m)
n,k of order m by means of

the following generating function:

(22) F
(m)
k (t) =

∞
∑

n=1

f
(m)
n,k

tn

n!
=

(

et − 1

k + 1− ket

)m

.

From this equation, we get the following theorem:

Theorem 3.3.

f
(m)
n,k =

n
∑

j=1

(

n

j

)

f
(l)
j,kf

(m−l)
n−j,k .

Proof. The proof is similar to that of Theorem 3.1. We omit the details. �

4. Identities and relations

In this section, by using generating functions, we derive various novel iden-
tity and relations including the Apostol-Bernoulli numbers and polynomials,
the Stirling numbers of the second kind and the Fubini type numbers and
polynomials.

By using (11), (13) and (19), we derive the following functional equation:

(2k)!

2k
Fs(t, 2k)Fa(t, k) = F 2k

M (t).

By using this functional equation, we get

∞
∑

n=0

w
(2k)
M (n)

tn

n!
=

(2k)!

2k

∞
∑

n=0

S2 (n, 2k)
tn

n!

∞
∑

n=0

a(k)n

tn

n!
.

Therefore

∞
∑

n=0

w
(2k)
M (n)

tn

n!
=

(2k)!

2k

∞
∑

n=0





n
∑

j=0

(

n

j

)

S2 (j, 2k) a
(k)
n−j





tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the following theorem.
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Theorem 4.1.

(23) w
(2k)
M (n) =

(2k)!

2k

n
∑

j=0

(

n

j

)

S2 (j, 2k) a
(k)
n−j .

Substituting k = 1 into (23), we get the following alternative formulas for

the numbers w
(2)
M (n) as follows:

w
(2)
M (n) =

n
∑

j=0

(

n

j

)

wM (j)wM (n− j),

w
(2)
M (n) =

n
∑

j=0

(

n

j

)

S2 (j, 2) an−j ,

and since j < 2, S2 (j, 2) = 0, we have

w
(2)
M (n) =

n
∑

j=2

(

n

j

)

S2 (j, 2) an−j .

Proposition 4.2 (A recurrence relation for the numbers an). Let a0 = 2.
Then we have

(24) an =
n
∑

k=0

(

n

k

)

ak −
n
∑

k=0

(

n

k

)

2n−k−2ak.

Proof. By (14), we get

4
∞
∑

n=0

an
tn

n!
− 4et

∞
∑

n=0

an
tn

n!
+ e2t

∞
∑

n=0

an
tn

n!
= 2.

Therefore
∞
∑

n=0

(

4an − 4
n
∑

k=0

(

n

k

)

ak +
n
∑

k=0

(

n

k

)

2n−kak

)

tn

n!
= 2.

For n ∈ N, by comparing the coefficients of tn

n! on both sides of the above
equation, we arrive at the desired result. �

A relation between the numbers an and the Apostol-Bernoulli numbers of
order 2 is given by the following proposition:

Proposition 4.3. The following identity holds true:

(25) an =
1

2(n+ 1)(n+ 2)
B
(2)
n+2

(

1

2

)

(n ∈ N0) .

Proof. By combining (6) with (14), we obtain

∞
∑

n=0

an
tn

n!
=

1

2t2

∞
∑

n=0

B(2)
n

(

1

2

)

tn

n!
.
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Therefore
∞
∑

n=0

2n (n− 1) an−2
tn

n!
=

∞
∑

n=0

B(2)
n

(

1

2

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Substituting l = 1 into (21), we obtain

(26) an(x) =

n
∑

k=0

(

n

k

)

akx
n−k.

Combining (25) with (26), we arrive at the following corollary:

Corollary 4.1.

(27) an(x) =

n
∑

k=0

(

n

k

)

B
(2)
k+2(

1
2 )

2(k + 1)(k + 2)
xn−k.

Proposition 4.4. Let l, b ∈ N with l ≥ b. Then

(28) a(l)n (x) =
n
∑

k=0

(

n

k

)

a
(b)
k a

(l−b)
n−k (x) .

Proof. By (18), we define the following functional equation:

Fa(x; t, l) = Fa(t, b)Fa(x; t, l − b).

From this equation, we get

∞
∑

n=0

a(l)n (x)
tn

n!
=

∞
∑

n=0

a(b)n

tn

n!

∞
∑

n=0

a(l−b)
n (x)

tn

n!
.

Therefore
∞
∑

n=0

a(l)n (x)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

a
(b)
k a

(l−b)
n−k (x)

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Proposition 4.5. We have

(29) a(l)n (x+ 1) =

n
∑

k=0

(

n

k

)

a
(l)
k (x).

Proof. By using (18), we get

∞
∑

n=0

a(l)n (x+ 1)
tn

n!
=

∞
∑

n=0

a(l)n (x)
tn

n!

∞
∑

n=0

tn

n!
.
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Therefore
∞
∑

n=0

a(l)n (x+ 1)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

a
(l)
k (x)

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Proposition 4.6. Let m,n ∈ N with n ≥ m. Then

(30)
∂m

∂xm
a(l)n (x) = m!

(

n

m

)

a
(l)
n−m(x).

Proof. By applying ∂m

∂xm
derivative operator to equation (18), we obtain

∞
∑

n=0

∂m

∂xm
a(l)n (x)

tn

n!
=

∞
∑

n=0

a(l)n (x)
tn+m

n!
.

Hence
∞
∑

n=0

∂m

∂xm
a(l)n (x)

tn

n!
=

∞
∑

n=0

m!

(

n

m

)

a
(l)
n−m(x)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

A relationship between the numbers an and wg(n) is given by the following
theorem:

Theorem 4.7.

an = 2

n
∑

k=0

(

n

k

)

wg(k)wg(n− k).

Proof. By combining (12) with (14), we get

1

2

∞
∑

n=0

an
tn

n!
=

∞
∑

n=0

wg(n)
tn

n!

∞
∑

n=0

wg(n)
tn

n!
.

Therefore

1

2

∞
∑

n=0

an
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

wg(k)wg(n− k)

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Theorem 4.8.

(31)

n
∑

m=0

2l
∑

j=0

(−1)j
(

2l

j

)(

n

m

)

j!S2(m, j)a
(l)
n−m(x) = 2lxn.
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Proof. By using (18), we get

2l
∞
∑

n=0

xn t
n

n!
=
(

et − 2
)2l

∞
∑

n=0

a(l)n (x)
tn

n!
.

After some elementary calculation in the above equation, we get

∞
∑

n=0

2lxn t
n

n!
=

2l
∑

j=0

(−1)j
(

2l

j

)

j!
(et − 1)j

j!

∞
∑

n=0

a(l)n (x)
tn

n!
.

Therefore

∞
∑

n=0

2lxn t
n

n!
=

∞
∑

n=0





n
∑

m=0

(

n

m

) 2l
∑

j=0

(−1)j
(

2l

j

)

j!S2(m, j)a
(l)
n−m(x)





tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Substituting x = 0 into (31), we get the following corollary:

Corollary 4.2.

n
∑

m=0

2l
∑

j=0

(−1)j
(

n

m

)(

2l

j

)

j!S2(m, j)a
(l)
n−m = 0.

Theorem 4.9. The following identity holds true:

fn−1,k = −
1

k(k + 1)n
Bn

(

k

k + 1

)

(n ∈ N) .

Proof. By using (15), we get

∞
∑

n=1

fn,k
tn

n!
=

1

t(k + 1)

(

t
k

k+1e
t − 1

−
tet

k
k+1e

t − 1

)

.

Now combining (3) with the above equation, we obtain

(k + 1)

∞
∑

n=1

fn,k
tn+1

n!
=

∞
∑

n=0

(

Bn

(

k

k + 1

)

− Bn

(

1,
k

k + 1

))

tn

n!
.

Since

B0

(

k

k + 1

)

− B0

(

1,
k

k + 1

)

+ B1

(

k

k + 1

)

− B1

(

1,
k

k + 1

)

= 0,

we have
∞
∑

n=2

(k + 1)nfn−1,k
tn

n!
=

∞
∑

n=2

(

Bn

(

k

k + 1

)

− Bn

(

1,
k

k + 1

))

tn

n!
.
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Combining (5) with the above equation, we have
∞
∑

n=2

(k + 1)nfn−1,k
tn

n!
=

−1

k

∞
∑

n=2

Bn

(

k

k + 1

)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Theorem 4.10. We have

(32) f
(m)
n−m,k =

1

m!
(

n
m

)

(k + 1)m

m
∑

j=0

(−1)j
(

m

j

)

B(m)
n

(

j,
k

k + 1

)

.

Proof. By using (22), we get
∞
∑

n=1

f
(m)
n,k

tn

n!
=

1

(k + 1)m
(

1− k
k+1e

t

)m

tm

m
∑

j=0

(−1)m−j

(

m

j

)

ejttm.

After some elementary calculations, we get
∞
∑

n=1

(

m!

(

n

m

)

f
(m)
n−m,k

)

tn

n!

=

∞
∑

n=1





1

(k + 1)m

m
∑

j=0

(−1)j
(

m

j

)

B(m)
n

(

j,
k

k + 1

)





tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

Theorem 4.11. We have

S2(n,m) =
km

m!

n
∑

v=0

m
∑

j=0

(−1)j
(

m

j

)(

n

v

)(

k + 1

k

)m−j

jvf
(m)
n−v,k

−
km

m!

m
∑

j=0

(−1)j
(

m

j

)

jn
(

k + 1

k

)m−j

.

Proof. By using (22), we get

1

m!
(k + 1− ket)m

∞
∑

n=1

f
(m)
n,k

tn

n!
=

∞
∑

n=0

S2 (n,m)
tn

n!
.

From this equation, we have
∞
∑

n=0

S2 (n,m)
tn

n!
= −

km

m!

m
∑

j=0

(−1)j
(

m

j

)(

k + 1

k

)m−j ∞
∑

n=0

jn
tn

n!

+
km

m!

m
∑

j=0

(−1)j
(

m

j

)(

k + 1

k

)m−j ∞
∑

n=0

jn
tn

n!

∞
∑

n=0

f
(m)
n,k

tn

n!
.
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Therefore,

∞
∑

n=0

S2 (n,m)
tn

n!
= −

∞
∑

n=0

km

m!

m
∑

j=0

(−1)j
(

m

j

)

jn
(

k + 1

k

)m−j
tn

n!

+

∞
∑

n=0

km

m!

n
∑

v=0

m
∑

j=0

(−1)j
(

m

j

)(

n

v

)(

k + 1

k

)m−j

jvf
(m)
n−v,k

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result. �

4.1. Combinatorial sums including the Fubini numbers

Here, by using the Riemann integral, we derive combinatorial sums including
the Fubini type numbers and the Apostol-Bernoulli numbers.

Integrating both sides of (26) from 0 to 1 with respect to x, we arrive at the
following result:

(33)

∫ 1

0

an(x)dx =

n
∑

k=0

(

n

k

)

ak

n+ 1− k
.

Combining the above result with (27), we get the following combinatorial sum:

Theorem 4.12. The following identity holds true:

n
∑

k=0

(

n

k

)

ak

n+ 1− k
=

n
∑

k=0

(

n

k

)

B
(2)
k+2(

1
2 )

2(k + 1)(k + 2)(n+ 1− k)
.

Theorem 4.13. The following identity holds true:

n
∑

m=0

2l
∑

j=0

n−m
∑

k=0

(−1)j
(

n−m

k

)(

2l

j

)(

n

m

)

j!S2(m, j)a
(l)
k

n+ 1− k −m
=

2l

n+ 1
.

Proof. Integrating both sides of (31) from 0 to 1 with respect to x, we arrive
at the following result:

(34)

n
∑

m=0

2l
∑

j=0

(−1)j
(

2l

j

)(

n

m

)

j!S2(m, j)

∫ 1

0

a
(l)
n−m(x)dx =

2l

n+ 1
.

And also by integrating both sides of (21) from 0 to 1 with respect to x, we get

∫ 1

0

a
(l)
n−m(x)dx =

n−m
∑

k=0

(

n−m

k

)

a
(l)
k

n+ 1− k −m
.

By substituting the above equation into (34), we get the desired result. �
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