THE GENERALIZED COGOTTLIEB GROUPS, RELATED ACTIONS AND EXACT SEQUENCES

Ho-Won Choi, Jae-Ryong Kim, and Nobuyuki Oda

Abstract

The generalized coGottlieb sets are not known to be groups in general. We study some conditions which make them groups. Moreover, there are actions on the generalized coGottlieb sets which are different from known actions up to now. We give related exact sequence of the generalized coGottlieb sets. Using them, we obtain certain results related to the maps which preserve generalized coGottlieb sets.

1. Introduction

The Gottlieb group $G_{n}(X)(n \geq 1)$ was defined by Gottlieb [3] and the coGottlieb group $G^{n}(X ; \mathbb{F})$ by Haslam $[5,6]$ for any abelian group \mathbb{F}. The purpose of this paper is to study some properties of the generalizations of the coGottlieb group, namely the homotopy set $D G(X, Z)$ of cocyclic maps by Varadarajan [12], the homotopy set $p^{\top}(X, Z)$ of p-cocyclic maps for a map $p: X \rightarrow A$ by Oda [10], and the subset $G_{p}^{n}(X ; \mathbb{F})$ of p-cocyclic elements in $H^{n}(X ; \mathbb{F})$ by Yoon [14]. We have relations : $D G(X, Z)=\left(1_{X}\right)^{\top}(X, Z)$ for the identity map $1_{X}: X \rightarrow X$ and $G_{p}^{n}(X ; \mathbb{F})=p^{\top}(X, K(\mathbb{F}, n))$ for the EilenbergMac Lane space $K(\mathbb{F}, n)$ (see Section 2 for the definitions).

When Z is a grouplike space, the subset $p^{\top}(X, Z)$ is not known to be closed under the addition + in general, even if $Z=K(\mathbb{F}, n)$, although the homotopy set $[X, Z]$ is a group. However, if Z is a grouplike space, then we see by Proposition 2.1 that $p^{\top}(X, Z)$ contains the unit 0 and the inverse $-\alpha \in p^{\top}(X, Z)$ for any $\alpha \in p^{\top}(X, Z)$ and, of course, satisfies the associativity; moreover, if $\alpha \in p^{\top}(X, Z)$, then $k \alpha \in p^{\top}(X, Z)$ for any integer k by Theorem 2.3. For further study we introduce the following terminology (Definition 2.4): Let n be a positive integer and \mathbb{F} an abelian group. A map $p: X \rightarrow A$ is said to be an (n, \mathbb{F})-essential map of the coGottlieb group of X if the addition + is

[^0]closed in $G_{p}^{n}(X ; \mathbb{F})$. A map $p: X \rightarrow A$ is said to be an essential map if it is an (n, \mathbb{F})-essential map of the coGottlieb group of X for every n and \mathbb{F}.

More generally, we call a map $p: X \rightarrow A$ a strongly essential (or s-essential) map if the addition + is closed in $p^{\top}(X, Y)$ for any grouplike spaces Y (Definition 4.5),

In Section 3 we consider an action of $H^{n}(A ; \mathbb{F})$ on $H^{n}(X ; \mathbb{F})$. For any elements $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$, we define an element $a * f \in H^{n}(X ; \mathbb{F})$ by $a * f=a \circ p+f$. Here, the symbol + is the addition in $H^{n}(X ; \mathbb{F})$ induced by the Hopf structure $m: K(\mathbb{F}, n) \times K(\mathbb{F}, n) \rightarrow K(\mathbb{F}, n)$. Then we have a pairing

$$
\mu: H^{n}(A ; \mathbb{F}) \times H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})
$$

given by $\mu(a, f)=a * f=a \circ p+f$ for any $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$. We show that there exists an action of the coGottlieb group $G^{n}(A ; \mathbb{F})$ on the set $G_{p}^{n}(X ; \mathbb{F})$ defined by $\mu(f, a)=a * f$ (Theorem 3.4):

$$
\mu: G^{n}(A ; \mathbb{F}) \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})
$$

In Section 4 we prove that the following sequence is exact as sets for any spaces X, A, Y_{1}, Y_{2} and any map $p: X \rightarrow A$ (Theorem 4.2):

$$
0 \longrightarrow p^{\top}\left(X, Y_{1}\right) \xrightarrow{i_{1 \sharp}} p^{\top}\left(X, Y_{1} \times Y_{2}\right) \xrightarrow{p_{2 \sharp}} p^{\top}\left(X, Y_{2}\right) \longrightarrow 0 .
$$

The following result is proved (Theorem 4.7(3)): If Y_{1} and Y_{2} are grouplike spaces and $p: X \rightarrow A$ is strongly essential, then there exists an isomorphism of groups

$$
p^{\top}\left(X, Y_{1} \times Y_{2}\right) \cong p^{\top}\left(X, Y_{1}\right) \times p^{\top}\left(X, Y_{2}\right)
$$

Let \mathbb{H} and \mathbb{L} be any abelian groups and $p: X \rightarrow A$ a map. A homomorphism $h: \mathbb{H} \rightarrow \mathbb{L}$ induces a function $h_{*}: G_{p}^{n}(X ; \mathbb{H}) \rightarrow G_{p}^{n}(X ; \mathbb{L})$ (Proposition 5.1) and in Section 5 we study some properties of them. Consider the following diagram:

Let $m \geq 1$ be an integer. We define the following subset of the homotopy set $[Y, X]$:

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{F})=\left\{f \in[Y, X] \mid G_{q}^{n}(Y ; \mathbb{F}) \supset f^{*}\left(G_{p}^{n}(X ; \mathbb{F})\right) \quad \text { for all } n \leq m\right\}
$$

A map $f: Y \rightarrow X$ is called an $\mathbb{F}-(q, p)$-cocyclic element preserving map up to m or an $\mathbb{F}-D C P_{q, p^{-}}^{m}-m a p$ if $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{F})([7])$.

In Theorem 5.3 we prove that if $0 \rightarrow \mathbb{H} \xrightarrow{h} \mathbb{G} \xrightarrow{g} \mathbb{L} \rightarrow 0$ is a split short exact sequence of abelian groups, then the following relation holds:

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{G}) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

and if, in addition, q is an (n, \mathbb{G})-essential map for any $n \leq m$, then the equality $D C P_{q, p}^{m}(Y, X ; \mathbb{G})=D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{L})$ holds (Theorem 5.4).

2. Certain properties of coGottlieb groups

We consider based topological spaces and based maps in this paper, therefore, a space is a based topological space and a map is a based map. The identity map for a space X is denoted by $1_{X}: X \rightarrow X$. The symbol $f \simeq g: X \rightarrow Y$ means a based homotopy and the homotopy class of a map $f: X \rightarrow Y$ is denoted by $[f]: X \rightarrow Y$. We use the same symbol f for a map f and its homotopy class $[f]$ in some cases for simplicity. The set of homotopy classes of maps from X to Y is denoted by $[X, Y]$.

For any maps $h: A \rightarrow B$ and $u: A \rightarrow C$, let

$$
h \Delta u=(h \times u) \circ \Delta: A \xrightarrow{\Delta} A \times A \xrightarrow{h \times u} B \times C
$$

be the composition of the diagonal map $\Delta: A \rightarrow A \times A$ and the product map $h \times u: A \times A \rightarrow B \times C$. Let $i_{X, Y}: X \vee Y \rightarrow X \times Y$ be the natural inclusion for any spaces X and Y.

Let $h: A \rightarrow B$ and $u: A \rightarrow C$ be any maps. If there exists a map $\theta: A \rightarrow B \vee C$ of type $h \Delta u: A \rightarrow B \times C$, namely

$$
i_{B, C} \circ \theta \simeq h \Delta u: A \rightarrow B \times C,
$$

then we write $h \top u$. If $h \top u$, then we have the relation

$$
\left(h^{\prime} \circ h \circ d\right) \top\left(u^{\prime} \circ u \circ d\right)
$$

for any $d: D \rightarrow A, h^{\prime}: B \rightarrow B^{\prime}$ and $u^{\prime}: C \rightarrow C^{\prime}$ by Theorems 3.3 and 3.4 of [10].

For any map $p: X \rightarrow A$, we define

$$
p^{\top}(X, Z)=\{[a]: X \rightarrow Z \mid p \top a\} \subset[X, Z]
$$

as in [10]. If $p=1_{X}$, then we recover the set

$$
D G(X, Z)=\left\{[a]: X \rightarrow Z \mid 1_{X} \top a\right\} \subset[X, Z]
$$

defined by Varadarajan [12]. Let $K(\mathbb{F}, n)$ be the Eilenberg-MacLane space. The coGottlieb group or the coevaluation subgroup

$$
G^{n}(X ; \mathbb{F})=D G(X, K(\mathbb{F}, n))=\left\{[a]: X \rightarrow K(\mathbb{F}, n) \mid 1_{X} \top a\right\} \subset H^{n}(X ; \mathbb{F})
$$

was defined by Haslam [5, 6] for any abelian group \mathbb{F}. Yoon [14] defined the generalized coGottlieb set $G_{p}^{n}(X ; \mathbb{F})=G^{n}(X, p, A ; \mathbb{F})$ of $H^{n}(X ; \mathbb{F})$ by

$$
G_{p}^{n}(X ; \mathbb{F})=p^{\top}(X, K(\mathbb{F}, n))=\{[a]: X \rightarrow K(\mathbb{F}, n) \mid p \top a\} \subset H^{n}(X ; \mathbb{F})
$$

for any map $p: X \rightarrow A$.
We begin by studying some properties of the subset $p^{\top}(X, Z)$ of $[X, Z]$, where Z is a grouplike space of Whitehead [13]:
Proposition 2.1. If Z is a grouplike space, then the set $p^{\top}(X, Z)$ satisfies the following:
(1) If $\alpha, \beta, \gamma \in p^{\top}(X, Z)$, then $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
(2) $0 \in p^{\top}(X, Z)$.
(3) If $\alpha \in p^{\top}(X, Z)$, then $-\alpha \in p^{\top}(X, Z)$.
(4) (The case $\left.p=1_{X}\right) \alpha, \beta \in D G(X, Z)$ implies $\alpha+\beta \in D G(X, Z)$.

Proof. (1) The associativity holds in $[X, Z]$. However, the addition + is not always closed in $p^{\top}(X, Z)$.
(2) Since $p \top 0$ holds, we have $0 \in p^{\top}(X, Z)$.
(3) If $\alpha \in p^{\top}(X, Z)$, then $p \top \alpha$ and $-\alpha=\nu \circ \alpha$ for the inversion $\nu: Z \rightarrow Z$. Since $p \top(\nu \circ \alpha)$, we have $-\alpha \in p^{\top}(X, Z)$.
(4) This is the result of Theorem 4.2 of Lim [8].
(Remark: If $Z=K(\mathbb{F}, n)$, then (4) is a result of Section 5 of Haslam [6]. However, it is not known when $p^{\top}(X, Z)$ is a group for $p \neq 1_{X}, *$.)

The following is the case where $Z=K(\mathbb{F}, n)$ in Proposition 2.1.
Corollary 2.2. The set $G_{p}^{n}(X ; \mathbb{F})$ satisfies the following:
(1) If $\alpha, \beta, \gamma \in G_{p}^{n}(X ; \mathbb{F})$, then $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
(2) $0 \in G_{p}^{n}(X ; \mathbb{F})$.
(3) If $\alpha \in G_{p}^{n}(X ; \mathbb{F})$, then $-\alpha \in G_{p}^{n}(X ; \mathbb{F})$.
(4) $\alpha, \beta \in G^{n}(X ; \mathbb{F})$ implies $\alpha+\beta \in G^{n}(X ; \mathbb{F})$.

Theorem 2.3. Let $p: X \rightarrow A$ be a map and Z a grouplike space. If $\alpha \in$ $p^{\top}(X, Z)$, then $k \alpha \in p^{\top}(X, Z)$ for any integer k.
Proof. If $k=0, \pm 1$, the result is clear by Proposition 2.1. Let $k \geq 2$ be a natural number. Let $\Delta_{k}: Z \rightarrow \prod_{k} Z$ be the k-hold diagonal map, and $m_{k}: \prod_{k} Z \rightarrow Z$ the k-hold multiplication. If $f \in p^{\top}(X, Z)$, then $p \top f$ and hence $p \top\left(m_{k} \circ \Delta_{k} \circ f\right)$. We see

$$
m_{k} \circ \Delta_{k} \circ f=m_{k} \circ\left(\prod_{k} f\right) \circ \Delta_{k}=k f .
$$

It follows that $k f \in p^{\top}(X, Z)$.
By Corollary 2.2, the subset $G_{p}^{n}(X ; \mathbb{F})$ of $H^{n}(X: \mathbb{F})$ contains the unit 0 and the inverse $-\alpha \in G_{p}^{n}(X ; \mathbb{F})$ for any $\alpha \in G_{p}^{n}(X ; \mathbb{F})$ and of course satisfies the associativity, although $G_{p}^{n}(X ; \mathbb{F})$ is not proved to be closed under the addition + in general. Therefore we define the following:

Definition 2.4. Let n be a positive integer and \mathbb{F} an abelian group. A map $p: X \rightarrow A$ is said to be an (n, \mathbb{F})-essential map of the coGottlieb group of X if the addition + is closed in $G_{p}^{n}(X ; \mathbb{F})$. A map $p: X \rightarrow A$ is said to be an essential map if it is an (n, \mathbb{F})-essential map of the coGottlieb group of X for every n and \mathbb{F}.

We see that a map $p: X \rightarrow A$ is an (n, \mathbb{F})-essential map if $p \top \alpha$ and $p \top \beta$ implies $p \top(\alpha+\beta)$ for any $\alpha, \beta \in[X, K(\mathbb{F}, n)]$. Clearly p is (n, \mathbb{F})-essential if and only if $G_{p}^{n}(X ; \mathbb{F})$ is a subgroup of $H^{n}(X ; \mathbb{F})$.

Example 2.5. The identity map $1_{X}: X \rightarrow X$ is an essential map, since the coGottlieb set $G_{1_{X}}^{n}(X ; \mathbb{F})$ is an abelian group by Theorem 4.2 of [8]. If $p=*$ is the constant map, then $G_{*}^{n}(X ; \mathbb{F})=H^{n}(X ; \mathbb{F}) ;$ and hence $*$ is also an essential map. Any cocyclic map $p: X \rightarrow A$ is essential, since a map $p: X \rightarrow A$ is a cocyclic map if and only if $G_{p}^{n}(X ; \mathbb{F})=H^{n}(X ; \mathbb{F})$ for every abelian group \mathbb{F} ([14]).

Example 2.6. The inclusion relation $G_{p}^{n}(X ; \mathbb{F}) \subset G_{r o p}^{n}(X ; \mathbb{F})$ holds for any maps $p: X \rightarrow A$ and $r: A \rightarrow B$. Hence if $r: A \rightarrow B$ is a map with a left homotopy inverse map $\ell: B \rightarrow A$ and $p: X \rightarrow A$ is an (n, \mathbb{F})-essential map, then we see

$$
G_{p}^{n}(X ; \mathbb{F}) \subset G_{r \circ p}^{n}(X ; \mathbb{F}) \subset G_{\ell \circ r \circ p}^{n}(X ; \mathbb{F}) \subset G_{1_{A} \circ p}^{n}(X ; \mathbb{F}) \subset G_{p}^{n}(X ; \mathbb{F})
$$

or $G_{r \circ p}^{n}(X ; \mathbb{F})=G_{p}^{n}(X ; \mathbb{F})$. Hence $r \circ p: X \rightarrow B$ is also (n, \mathbb{F})-essential.
Any map $p: X \rightarrow A$ with a left homotopy inverse $\ell: A \rightarrow X$ is essential, since $G_{1_{X}}^{n}(X ; \mathbb{F}) \subset G_{p}^{n}(X ; \mathbb{F}) \subset G_{\ell \circ p}^{n}(X ; \mathbb{F})=G_{1_{X}}^{n}(X ; \mathbb{F})$ or $G_{1_{X}}^{n}(X ; \mathbb{F})=$ $G_{p}^{n}(X ; \mathbb{F})$.

Any homotopy equivalence is also an essential map.
Proposition 2.7. If $p: X \rightarrow X$ is a homotopy idempotent map, that is, $p^{2}=p \circ p \simeq p$, then $\alpha \circ p+\beta \in G_{p}^{n}(X ; \mathbb{F})$ for any $\alpha, \beta \in G_{p}^{n}(X ; \mathbb{F})$.

Proof. Let $\alpha, \beta \in G_{p}^{n}(X ; \mathbb{F})$. Then $p \top \alpha$ and $p \top \beta$ hold and we have $(p \circ p) \top(\alpha \circ$ $p+\beta$) by Theorem 3.9(2) of [10]. It follows that $p \top(\alpha \circ p+\beta)$ or $\alpha \circ p+\beta \in$ $G_{p}^{n}(X ; \mathbb{F})$.

Corollary 2.8. If there exists $p: X \rightarrow X$ such that $p^{2} \simeq p$ and $\beta \circ p \simeq \beta$ for every $\beta \in G_{p}^{n}(X ; \mathbb{F})$, then p is an essantial map.

Example 2.9. Assume that $H^{n}(X ; \mathbb{F}) \cong 0$ or $\mathbb{Z}_{q_{n}}$ where q_{n} is a prime number for any $n \geq 1$. Then $G_{p}^{n}(X ; \mathbb{F}) \cong 0$ or $\mathbb{Z}_{q_{n}}$ by Theorem 2.3. It follows that all $p: X \rightarrow A$ is an essential map of coGottlieb group of X.

Proposition 2.10. If $p: X \rightarrow A$ is an essential map, then the following hold.
(1) The induced function $k: G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})$ defined by $k(\alpha)=k \alpha$ for any integer k is a homomorphism.
(2) There exists a bilinear multiplication $\mu: \mathbb{Z} \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})$ given by $\mu(k, \alpha)=k \alpha$.

Proof. (1) is obtained by Theorem 2.3.
(2) Define $\mu: \mathbb{Z} \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})$ by $\mu(k, \alpha)=k \alpha$. Then we have

$$
\begin{aligned}
& \mu(h, \mu(k, \alpha))=h(k \alpha), \mu\left(k+k^{\prime}, \alpha\right)=\mu(k, \alpha)+\mu\left(k^{\prime}, \alpha\right), \\
& \mu(k, \alpha+\beta)=\mu(k, \alpha)+\mu(k, \beta) .
\end{aligned}
$$

3. Action $H^{n}(A ; \mathbb{F})$ on $G_{p}^{n}(X ; \mathbb{F})$ for a given $\operatorname{map} p: X \rightarrow A$

Let $\nabla=\nabla_{Z}: Z \vee Z \rightarrow Z$ the folding map. For any $\operatorname{map} \beta: B \rightarrow Z$ and $\gamma: C \rightarrow Z$, we define a map

$$
\beta \nabla \gamma=\nabla \circ(\beta \vee \gamma): B \vee C \xrightarrow{\beta \vee \gamma} Z \vee Z \xrightarrow{\nabla} Z
$$

A map $\theta: A \rightarrow B \vee C$ defines an addition

$$
\beta \dot{+} \gamma=(\beta \nabla \gamma) \circ \theta: A \rightarrow Z
$$

for any map $\beta: B \rightarrow Z$ and $\gamma: C \rightarrow Z$; dually, a map $\mu: X \times Y \rightarrow Z$ defines an addition

$$
\chi+\eta=\mu \circ(\chi \Delta \eta): A \rightarrow Z
$$

for any map $\chi: A \rightarrow X$ and $\eta: A \rightarrow Y$ (see [11]).
Now we consider an action of $H^{n}(A ; \mathbb{F})$ on $H^{n}(X ; \mathbb{F})$. For any elements $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$, we define an element $a * f \in H^{n}(X ; \mathbb{F})$ by

$$
a * f=a \circ p+f
$$

Here, the symbol + is the addition in $H^{n}(X ; \mathbb{F})$ induced by the Hopf structure $m: K(\mathbb{F}, n) \times K(\mathbb{F}, n) \rightarrow K(\mathbb{F}, n)$. Then we have a pairing

$$
\mu: H^{n}(A ; \mathbb{F}) \times H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})
$$

given by $\mu(a, f)=a * f=a \circ p+f$ for any $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$. We note that μ is a surjective homomorphims of groups.
Proposition 3.1. The pairing $\mu: H^{n}(A ; \mathbb{F}) \times H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})$ satisfies the following relations:
(1) $a * 0=a \circ p$ for any $a \in H^{n}(A ; \mathbb{F})$ and $0 * f=f$ for any $f \in H^{n}(X ; \mathbb{F})$.
(2) $a *(b * f)=(a+b) * f$ for any $a, b \in H^{n}(A ; \mathbb{F})$ and any $f \in H^{n}(X ; \mathbb{F})$.
(3) $(h \circ a) *(h \circ f)=h \circ(a * f)$ for any $a \in H^{n}(A ; \mathbb{F}), f \in H^{n}(X ; \mathbb{F})$ and any map $h: K(\mathbb{F}, n) \rightarrow K(\mathbb{G}, n)$.
Proof. (1) For any $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$, we have

$$
a * 0=a \circ p+0=a \circ p, \quad 0 * f=0 \circ p+f=0+f=f
$$

(2) For any $a, b \in H^{n}(A ; \mathbb{F}), f \in H^{n}(X ; \mathbb{F})$ and any $f \in H^{n}(X ; \mathbb{F})$, we have

$$
\begin{aligned}
& a *(b * f)=a \circ p+(b * f)=a \circ p+(b \circ p+f) \\
= & (a \circ p+b \circ p)+f=(a+b) \circ p+f=(a+b) * f .
\end{aligned}
$$

(3) For any $a \in H^{n}(A ; \mathbb{F})$ and any $h: K(\mathbb{F}, n) \rightarrow K(\mathbb{G}, n)$ we have

$$
(h \circ a) *(h \circ f)=h \circ a \circ p+h \circ f=h \circ(a \circ p+f)=h \circ(a * f) .
$$

Corollary 3.2. For any $a, b \in H^{n}(A ; \mathbb{F})$ and any $f, g \in H^{n}(X ; \mathbb{F})$, we have the following relations:

$$
\begin{gathered}
a *(f+g)=a \circ p+(f+g)=a * f+g=f+a * g, \\
a * f=a \circ p+f=a * 0+f,
\end{gathered}
$$

$$
(a+b) *(f+g)=(a+b) * f+g=a * f+b * g=b *(a * f+g) .
$$

Now we consider an action of $H^{n}(A ; \mathbb{F})$ on $G_{p}^{n}(X ; \mathbb{F})$ for a given map p : $X \rightarrow A$. For any element $f \in G_{p}^{n}(X ; \mathbb{F})$, there exists a coaffiliated map $\psi_{p, f}$: $X \rightarrow A \vee K(\mathbb{F}, n)$ such that $j \circ \psi_{p, f} \simeq(p \times f) \circ \Delta$ as in the following diagram:

For $a \in H^{n}(A ; \mathbb{F})$ and $b \in H^{n}(K(\mathbb{F}, n) ; \mathbb{F})$, we define a map $a \dot{+} b: X \rightarrow$ $K(\mathbb{F}, n)$ by the composition:

$$
a \dot{+} b: X \xrightarrow{\psi_{p, f}} A \vee K(\mathbb{F}, n) \xrightarrow{a \vee b} K(\mathbb{F}, n) \vee K(\mathbb{F}, n) \xrightarrow{\nabla} K(\mathbb{F}, n) .
$$

Then $a \dot{+} b$ is an element of $H^{n}(X ; \mathbb{F})$. Moreover, by Theorem 2.7(2) of [11] (set $h=p, r=f, f=g=1_{K(\mathbb{F}, n)}, \alpha=a$ and $\delta=b$ in the theorem), we have

$$
a \dot{+} b=a \circ p+b \circ f,
$$

where $\dot{+}$ is the addition induced by $\psi_{p, f}: X \rightarrow A \vee K(\mathbb{F}, n)$ as above and + is the addition in $H^{n}(X ; \mathbb{F})$ which is denoted by + in [11]. Therefore, we have a pairing

$$
\mu: H^{n}(A ; \mathbb{F}) \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})
$$

given by $\mu(a, f)=a \dot{+} \iota_{K(\mathbb{F}, n)}(=a \circ p+f=a * f)$ for any $a \in H^{n}(A ; \mathbb{F})$ and $f \in G_{p}^{n}(X ; \mathbb{F})$.

Remark 3.3. For a given map $g: K(\mathbb{G}, n) \rightarrow K(\mathbb{F}, n)$ by replacing $a \in H^{n}(A ; \mathbb{F})$ by $a=g \circ l \in H^{n}(A ; \mathbb{F})$ for $l \in H^{n}(A ; \mathbb{G})$ in the above pairing, we can get a pairing

$$
\mu: H^{n}(A ; \mathbb{G}) \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})
$$

defined by $\mu(l, f)=g \circ l \circ p+f$.
Theorem 3.4. There exists an action of the coGottlieb group $G^{n}(A ; \mathbb{F})$ on the set $G_{p}^{n}(X ; \mathbb{F})$, that is, the function

$$
\mu: G^{n}(A ; \mathbb{F}) \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})
$$

defined by $\mu(a, f)=a * f$ for any $a \in G^{n}(A ; \mathbb{F})$ and $f \in G_{p}^{n}(X ; \mathbb{F})$ is well defined.

Proof. If $a \in G^{n}(A ; \mathbb{F})$ and $f \in G_{p}^{n}(X ; \mathbb{F})$, then $1_{A} \top a$ and $p \top f$. It follows that $\left(1_{A} \circ p\right) \top(a \circ p+f)$ or $p \top(a \circ p+f)$ by Theorem 3.9(2) of [10]. Hence $a * f=a \circ p+f \in G_{p}^{n}(X ; \mathbb{F})$.

Proposition 3.5. (1) For any $a \in H^{n}(A ; \mathbb{F})$ and $f \in H^{n}(X ; \mathbb{F})$, the induced homomorphism $(a * f)_{\#:}: \pi_{i}(X) \rightarrow \pi_{i}(K(\mathbb{F}, n))$ satisfies

$$
(a * f)_{\#}(x)=a_{\#}\left(p_{\#}(x)\right)+f_{\#}(x)
$$

for any $x \in \pi_{i}(X)$ and $i \geq 0$.
(2) For any $f \in G_{p}^{n}(X ; \mathbb{F})$ and $a \in H^{n}(A ; \mathbb{F})$, the induced homomorphism $(a * f)^{*}: H^{i}(K(\mathbb{F}, n) ; \mathbb{G}) \rightarrow H^{i}(X ; \mathbb{G})$ satisfies

$$
(a * f)^{*}(x)=(a \circ p)^{*}(x)+f^{*}(x)
$$

for any $x \in H^{i}(K(\mathbb{F}, n) ; \mathbb{G})$ and $i \geq 1$.
Proof. (1) Since $a * f=a \circ p+f$, we have $(a * f)_{\#}(x)=(a \circ p+f) \circ x=(a \circ p \circ x)+(f \circ x)=a_{\#}\left(p_{\#}(x)\right)+f_{\#}(x)$.
(2) Since $f \in G_{p}^{n}(X ; \mathbb{F})$, we have $a * f=a \circ p+f=a \dot{+} \iota_{K(\mathbb{F}, n)}$. Therefore,

$$
\begin{aligned}
(a * f)^{*}(x) & =x \circ\left(a \dot{+} 1_{K(\mathbb{F}, n)}\right)=(x \circ a) \dot{+}\left(x \circ 1_{K(\mathbb{F}, n)}\right) \\
& =(x \circ a) \dot{+} x=(x \circ a \circ p)+(x \circ f)=(a \circ p)^{*}(x)+f^{*}(x)
\end{aligned}
$$

by Theorem 2.7(2) of [11].
Arkowitz, Lupton and Murillo [2] defined

$$
\mathcal{E}^{*}(X)=\left\{f \in \mathcal{E}(X) \mid f^{*}=1: H^{i}(X ; \mathbb{Z}) \rightarrow H^{i}(X ; \mathbb{Z}) \text { for all } i\right\}
$$

for any space X, and

$$
\mathcal{E}_{\#}(X)=\left\{f \in \mathcal{E}(X) \mid f_{\#}=1: \pi_{i}(X) \rightarrow \pi_{i}(X) \text { for all } i \leq N=\operatorname{dim}(X)\right\}
$$

for any CW-complex X. We define

$$
\mathcal{E}_{n, \mathbb{F}}^{*}(X)=\left\{f \in \mathcal{E}(X) \mid f^{*}=1: H^{i}(X ; \mathbb{F}) \rightarrow H^{i}(X ; \mathbb{F}) \text { for all } i \leq n\right\}
$$

Example 3.6. Let $X=K(\mathbb{F}, n)$. Let $\iota: X \rightarrow X$ be the identity map and $a \in H^{n}(A ; \mathbb{F})$. Then we have the following results:
(1) $a * \iota \in \mathcal{E}_{\#}(X)$ if and only if $a_{\#} \circ p_{\#}=0: \pi_{n}(X) \rightarrow \pi_{n}(A) \rightarrow$ $\pi_{n}(K(\mathbb{F}, n))$.
(2) Suppose that $\iota \in G_{p}^{n}(X, \mathbb{F})$. Then, $a * \iota \in \mathcal{E}_{n, \mathbb{F}}^{*}(X)$ if and only if $p^{*} \circ a^{*}=0: H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(A ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})$.
(1) is obtained by Proposition 3.5(1).
(2) First assume that $a * \iota \in \mathcal{E}_{n, \mathbb{F}}^{*}(X)$. By Proposition 3.5(2) and the condition $a * \iota \in \mathcal{E}_{n, \mathbb{F}}^{*}(X)$, we have

$$
p^{*} \circ a^{*}=0: H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(A ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})
$$

Conversely assume that $p^{*} \circ a^{*}=0: H^{n}(X ; \mathbb{F}) \rightarrow H^{n}(A ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})$. Then for any $x \in H^{n}(X ; \mathbb{F})$, we get

$$
(a * \iota)^{*}(x)=(a \circ p)^{*}(x)+\iota^{*}(x)=\iota^{*}(x)=x
$$

It follows that

$$
((-a) * \iota) \circ(a * \iota)=(a * \iota)^{*}((-a) * \iota)=(-a) * \iota=((-a) * \iota)^{*}(\iota)=\iota .
$$

Similarly, we have $((-a) * \iota)^{*}(x)=x$ and $(a * \iota) \circ((-a) * \iota)=\iota$. Hence $a * \iota$ is a homotopy equivalence.

Remark 3.7. If $1_{K(\mathbb{F}, n)} \in G_{p}^{n}(K(\mathbb{F}, n), \mathbb{F})$, then $G_{p}^{n}(K(\mathbb{F}, n), \mathbb{F})=H^{n}(K(\mathbb{F}, n), \mathbb{F})$. Let $X=K(\mathbb{F}, n)$ and $p: X \rightarrow A$. Suppose that the induced cohomology homomorphism $p^{*}=0: H^{n}(A ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})$ in Example 3.6(2). Then for $a \in H^{n}(A ; \mathbb{F})$ we have $a \circ p=p^{*}(a)=0$, and

$$
a * \iota=(a \circ p)+1_{K(\mathbb{F}, n)}=0+1_{K(\mathbb{F}, n)}=\iota \in[X, X] .
$$

If A is a co-Hopf space, then we have the following sufficient conditions for the map $p: X \rightarrow A$ to be an (n, \mathbb{F})-essential map of the coGottlieb group of X.

Theorem 3.8. Let A be co-Hopf space. Then the map $p: X \rightarrow A$ is an $(n, \mathbb{F})-$ essential map of the coGottlieb group of X if one of the following conditions is satisfied:
(1) $p^{*}: H^{n}(A ; \mathbb{F}) \rightarrow H^{n}(X ; \mathbb{F})$ is surjective.
(2) $p: X \rightarrow A$ is an $(n+1)$-equivalence.

Proof. (1) Consider the function $\mu: G^{n}(A ; \mathbb{F}) \times G_{p}^{n}(X ; \mathbb{F}) \rightarrow G_{p}^{n}(X ; \mathbb{F})$ in Theorem 3.4. Since $0 \in G_{p}^{n}(X ; \mathbb{F})$, we have $\mu(a, 0)=a p+0=a p$ for all $a \in G^{n}(A ; \mathbb{F})$. Then $p^{*}\left(G^{n}(A ; \mathbb{F})\right)$ is a subset of $G_{p}^{n}(X ; \mathbb{F})$.

Since A be co-Hopf space, we have $G^{n}(A ; \mathbb{F})=H^{n}(A ; \mathbb{F})$. If $p^{*}: H^{n}(A ; \mathbb{F}) \rightarrow$ $H^{n}(X ; \mathbb{F})$ is surjective, then $p^{*}\left(G^{n}(A ; \mathbb{F})\right)=H^{n}(X ; \mathbb{F})$. Since $p^{*}\left(G^{n}(A ; \mathbb{F})\right) \subseteq$ $G_{p}^{n}(X ; \mathbb{F})$, we get

$$
G_{p}^{n}(X ; \mathbb{F}) \subseteq H^{n}(X ; \mathbb{F})=p^{*}\left(G^{n}(A ; \mathbb{F})\right) \subseteq G_{p}^{n}(X ; \mathbb{F})
$$

It follows that $G_{p}^{n}(X ; \mathbb{F})=H^{n}(X ; \mathbb{F})$.
(2) If the map $p: X \rightarrow A$ is an $(n+1)$-equivalence, then we have the result by virtue of the Proposition 8.2.2 in Arkowitz [1]: Let $f: X \rightarrow Y$ be an n equivalence, let Z be a space, and let $f^{*}:[Y, Z] \rightarrow[X, Z]$ be the induced map. If $\pi_{i}(Z)=0$ for $i \geq n$, then f^{*} is a surjection. If $\pi_{i}(Z)=0$ for $i \geq n+1$, then f^{*} is an injection.

Example 3.9. Let $X=\mathbb{C} P^{n}$, the complex projective n-space and $A=S^{2 n}$, the $2 n$-sphere. Let $p: \mathbb{C} P^{n} \rightarrow S^{2 n}$ be the natural projection. Then p^{*} : $H^{n}\left(S^{2 n} ; \mathbb{Z}\right) \rightarrow H^{n}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right)$ is an isomorphism and satisfies the condition of Theorem 3.8(1).

4. Exact sequences

Let $i_{1}: Y_{1} \rightarrow Y_{1} \times Y_{2}, i_{2}: Y_{1} \rightarrow Y_{1} \times Y_{2}$ be the inclusions and $p_{1}: Y_{1} \times Y_{2} \rightarrow$ $Y_{1}, p_{2}: Y_{1} \times Y_{2} \rightarrow Y_{2}$ be the projections as is shown in the following diagram.

$$
Y_{1} \underset{i_{1}}{\stackrel{p_{1}}{\leftrightarrows}} Y_{1} \times Y_{2} \underset{i_{2}}{\stackrel{p_{2}}{\rightleftarrows}} Y_{2}
$$

Let $\alpha \Delta \beta \in\left[X, Y_{1} \times Y_{2}\right]$ be the element defined by elements $\alpha \in\left[X, Y_{1}\right]$ and $\beta \in\left[X, Y_{2}\right]$. We define a set function

$$
\Phi: p^{\top}\left(X, Y_{1} \times Y_{2}\right) \rightarrow p^{\top}\left(X, Y_{1}\right) \times p^{\top}\left(X, Y_{2}\right)
$$

by $\Phi(\alpha \Delta \beta)=\left(p_{1} \circ(\alpha \Delta \beta), p_{2} \circ(\alpha \Delta \beta)\right)=(\alpha, \beta)$ for any $\alpha \Delta \beta \in p^{\top}\left(X, Y_{1} \times Y_{2}\right)$; if $p \top(\alpha \Delta \beta)$, then we see $p \top\left(p_{1} \circ(\alpha \Delta \beta)\right)$ and $p \top\left(p_{2} \circ(\alpha \Delta \beta)\right)$.
Proposition 4.1. The set function $\Phi: p^{\top}\left(X, Y_{1} \times Y_{2}\right) \rightarrow p^{\top}\left(X, Y_{1}\right) \times p^{\top}\left(X, Y_{2}\right)$ is a monomorphism for any X, A, Y_{1}, Y_{2} and $p: X \rightarrow A$.
Proof. We have the result by the universality of the product space $Y_{1} \times Y_{2}$.
Theorem 4.2. The following sequences are exact as sets for any spaces X, A, Y_{1}, Y_{2} and any map $p: X \rightarrow A$.

$$
\begin{aligned}
& 0 \longrightarrow p^{\top}\left(X, Y_{1}\right) \xrightarrow{i_{1 \sharp}} p^{\top}\left(X, Y_{1} \times Y_{2}\right) \xrightarrow{p_{2 \sharp}} p^{\top}\left(X, Y_{2}\right) \longrightarrow 0 ; \\
& 0 \longrightarrow p^{\top}\left(X, Y_{2}\right) \xrightarrow{i_{2 \sharp}} p^{\top}\left(X, Y_{1} \times Y_{2}\right) \xrightarrow{p_{1 \sharp}} p^{\top}\left(X, Y_{1}\right) \longrightarrow 0 .
\end{aligned}
$$

Proof. We prove the first exact sequence; the second one is proved similarly.
For any $\alpha_{2} \in p^{\top}\left(X, Y_{2}\right)$, we have $* \Delta \alpha_{2}=i_{2} \circ \alpha_{2} \in p^{\top}\left(X, Y_{1} \times Y_{2}\right)$ and $p_{2} \circ\left(* \Delta \alpha_{2}\right)=\alpha_{2}$.

Assume that $\alpha_{1} \Delta \alpha_{2} \in p^{\top}\left(X, Y_{1} \times Y_{2}\right)$ and $p_{2 \sharp}\left(\alpha_{1} \Delta \alpha_{2}\right)=*$. Then we have $\alpha_{2} \simeq *$ and hence

$$
\alpha_{1} \Delta \alpha_{2}=\alpha_{1} \Delta *=i_{1} \circ \alpha_{1}
$$

where $\alpha_{1}=p_{1} \circ\left(\alpha_{1} \Delta \alpha_{2}\right) \in p^{\top}\left(X, Y_{1}\right)$.

Finally, the inclusion $i_{1 \sharp}: p^{\top}\left(X, Y_{1}\right) \rightarrow p^{\top}\left(X, Y_{1} \times Y_{2}\right)$ is a monomorphism by the universality of the product space $Y_{1} \times Y_{2}$.

Proposition 4.3. If $0 \rightarrow \mathbb{H} \rightarrow \mathbb{G} \rightarrow \mathbb{L} \rightarrow 0$ is a split short exact sequence of abelian groups, then there exists the following short exact sequence of sets:

$$
0 \rightarrow G_{p}^{n}(X ; \mathbb{H}) \rightarrow G_{p}^{n}(X ; \mathbb{G}) \rightarrow G_{p}^{n}(X ; \mathbb{L}) \rightarrow 0
$$

Proof. The sequence $0 \rightarrow \mathbb{H} \rightarrow \mathbb{G} \rightarrow \mathbb{L} \rightarrow 0$ is a split short exact sequence if and only if $\mathbb{G} \cong \mathbb{H} \oplus \mathbb{L}$. The product space $K(\mathbb{H}, n) \times K(\mathbb{L}, n)$ is an Eilenberg-Mac Lane space of type $(\mathbb{H} \oplus \mathbb{L}, n)$. Hence the upper exact sequence in Theorem 4.2 becomes the following exact sequence:
$0 \rightarrow p^{\top}(X, K(\mathbb{H}, n)) \xrightarrow{i_{1 \sharp}} p^{\top}(X, K(\mathbb{H}, n) \times K(\mathbb{L}, n)) \xrightarrow{p_{2 \sharp}} p^{\top}(X, K(\mathbb{L}, n)) \rightarrow 0$, which is the exact sequence in question.

Corollary 4.4. Let $0 \rightarrow \mathbb{H} \rightarrow \mathbb{G} \rightarrow \mathbb{L} \rightarrow 0$ be a split short exact sequence of abelian groups. If p is an (n, \mathbb{F})-essential map for any $\mathbb{F}=\mathbb{H}, \mathbb{G}$ and \mathbb{L}, then there exists the following isomorphism of groups:

$$
G_{p}^{n}(X: \mathbb{G}) \cong G_{p}^{n}(X: \mathbb{H}) \oplus G_{p}^{n}(X: \mathbb{L})
$$

Proof. If p is an (n, \mathbb{F})-essential map for any $\mathbb{F}=\mathbb{H}, \mathbb{G}$ and \mathbb{L}, then the short exact sequence of sets in Proposition 4.3 becomes the short exact sequence of the groups with a cross section, and hence the result follows.

Definition 4.5. A map $p: X \rightarrow A$ is said to be a strongly essential (or s essential) map if the addition + is closed in $p^{\top}(X, Y)$ for any grouplike spaces Y.

Remark 4.6. The term '(n, \mathbb{F})-essential map' is defined for the case where $Y=$ $K(\mathbb{F}, n)$. The term 'strongly essential map' is used for grouplike spaces Y.

Theorem 4.7. Let X and A be any spaces and $p: X \rightarrow A$ any map. If $\alpha_{1} \in p^{\top}\left(X, Y_{1}\right)$ and $\alpha_{2} \in p^{\top}\left(X, Y_{2}\right)$, then the following hold.
(1) $\alpha_{1} \Delta *, * \Delta \alpha_{2} \in p^{\top}\left(X, Y_{1} \times Y_{2}\right)$.
(2) If Y_{1} and Y_{2} are Hopf spaces, then $\alpha_{1} \Delta \alpha_{2}=\left(\alpha_{1} \Delta *\right)+\left(* \Delta \alpha_{2}\right)$, where + is the addition in $\left[X, Y_{1} \times Y_{2}\right]$.
(3) If Y_{1} and Y_{2} are grouplike spaces and $p: X \rightarrow A$ is strongly essential, then $\alpha_{1} \Delta \alpha_{2} \in p^{\top}\left(X, Y_{1} \times Y_{2}\right)$, and hence there exists an isomorphism of groups

$$
p^{\top}\left(X, Y_{1} \times Y_{2}\right) \cong p^{\top}\left(X, Y_{1}\right) \times p^{\top}\left(X, Y_{2}\right)
$$

Proof. (1) If $p \top \alpha_{1}$ and $p \top \alpha_{2}$, then $p \top\left(i_{1} \circ \alpha_{1}\right)$ and $p \top\left(i_{2} \circ \alpha_{2}\right)$. Since $\alpha_{1} \Delta *=$ $i_{1} \circ \alpha_{1}$ and $* \Delta \alpha_{2}=i_{2} \circ \alpha_{2}$, we have $p \top\left(\alpha_{1} \Delta *\right)$ and $p \top\left(* \Delta \alpha_{2}\right)$.
(2) We see $\left(\alpha_{1} \Delta *\right)+\left(* \Delta \alpha_{2}\right)=\left(\alpha_{1}+*\right) \Delta\left(*+\alpha_{2}\right)=\alpha_{1} \Delta \alpha_{2}$.
(3) If $p: X \rightarrow A$ is strongly essential, then $p^{\top}\left(X, Y_{1} \times Y_{2}\right)$ is a group. It follows then that $p \top \alpha_{1}$ and $p \top \alpha_{2}$ imply $p \top\left(\alpha_{1} \Delta \alpha_{2}\right)$ by the results of Parts (1) and (2).

Remark 4.8. Suppose that Y_{1} and Y_{2} are Hopf spaces with multiplications $m_{1}: Y_{1} \times Y_{1} \rightarrow Y_{1}$ and $m_{2}: Y_{2} \times Y_{2} \rightarrow Y_{2}$ respectively. Then the multiplication of $Y_{1} \times Y_{2}$ in Theorem 4.7(2) is given by
$\left(m_{1} \times m_{2}\right) \circ\left(1_{Y_{1}} \times T \times 1_{Y_{2}}\right):\left(Y_{1} \times Y_{2}\right) \times\left(Y_{1} \times Y_{2}\right) \rightarrow\left(Y_{1} \times Y_{1}\right) \times\left(Y_{2} \times Y_{2}\right) \rightarrow Y_{1} \times Y_{2}$, where $T: Y_{2} \times Y_{1} \rightarrow Y_{1} \times Y_{2}$ is the switching map.

Remark 4.9. Let $m: Y_{1} \times Y_{2} \rightarrow Y$ be a pairing. Then for any $\alpha_{1} \in\left[X, Y_{1}\right]$ and $\alpha_{2} \in\left[X, Y_{2}\right]$, the 'addition' + is defined by

$$
\alpha_{1}+\alpha_{2}=m \circ\left(\alpha_{1} \Delta \alpha_{2}\right)=m \circ\left(\alpha_{1} \times \alpha_{2}\right) \circ \Delta .
$$

If $p \top\left(\alpha_{1} \Delta \alpha_{2}\right)$, then we see $p \top\left(\alpha_{1}+\alpha_{2}\right)$.
Remark 4.10. Let $\mathbf{T o p}_{*}$ be the category of small topological spaces with base point and Set the category of small sets. We note that

$$
p^{\top}(X, \bullet): \operatorname{Top}_{*} \rightarrow \text { Set }
$$

is a functor. If $p: X \rightarrow A$ is strongly essential, then $p^{\top}(X, \bullet)$ preserves products for grouplike spaces by Theorem 4.7(3).

5. Long sequences of coGottlieb sets

Proposition 5.1. Let \mathbb{H} and \mathbb{L} be any abelian groups and $p: X \rightarrow A$ a map. A homomorphism $h: \mathbb{H} \rightarrow \mathbb{L}$ induces a function

$$
h_{*}: G_{p}^{n}(X ; \mathbb{H}) \rightarrow G_{p}^{n}(X ; \mathbb{L}) .
$$

Proof. Let $\bar{h}: K(\mathbb{H}, n) \rightarrow K(\mathbb{L}, n)$ be the continuous map which induces the homomorphism of homotopy groups

$$
\pi_{n}(\bar{h})=h: \mathbb{H}=\pi_{n}(K(\mathbb{H}, n)) \rightarrow \pi_{n}(K(\mathbb{L}, n))=\mathbb{L} .
$$

We have the following commutative diagram:

$$
\begin{gathered}
G_{p}^{n}(X ; \mathbb{H}) \subset[X, K(\mathbb{H}, n)] \xrightarrow{\bar{h}_{\sharp}}[X, K(\mathbb{L}, n)] \supset G_{p}^{n}(X ; \mathbb{L}) \\
H^{n}(X ; \mathbb{H}) \xrightarrow{h_{*}} H^{n}(X ; \mathbb{L})
\end{gathered}
$$

If $\alpha \in G_{p}^{n}(X ; \mathbb{H}) \subset[X, K(\mathbb{H}, n)]=H^{n}(X ; \mathbb{H})$, then $p \top \alpha$ and hence $p \top(\bar{h} \circ \alpha)$. It follows that $h_{*}(\alpha)=\bar{h} \circ \alpha \in G_{p}^{n}(X ; \mathbb{L})$.

We have the following long graded sequence of coGottlieb sets.
Theorem 5.2. Let $0 \rightarrow \mathbb{H} \xrightarrow{h} \mathbb{G} \xrightarrow{g} \mathbb{L} \rightarrow 0$ be a short exact sequence of abelian groups. Then, there exists the following long graded sequence of sets:

$$
\begin{aligned}
& G_{p}^{1}(X ; \mathbb{H}) \xrightarrow{h_{*}} G_{p}^{1}(X ; \mathbb{G}) \xrightarrow{g_{*}} \cdots \xrightarrow{g_{*}} G_{p}^{n-1}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} \\
& G_{p}^{n}(X ; \mathbb{H}) \xrightarrow{h_{*}} G_{p}^{n}(X ; \mathbb{G}) \xrightarrow{g_{*}} G_{p}^{n}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} G_{p}^{n+1}(X ; \mathbb{H}) \xrightarrow{h_{*}} \cdots
\end{aligned}
$$

Proof. Since $0 \rightarrow \mathbb{H} \xrightarrow{h} \mathbb{G} \xrightarrow{g} \mathbb{L} \rightarrow 0$ is a short exact sequence of abelian groups, we have the following fibration sequence (see p. 167 [4]):

$$
\begin{array}{r}
K(\mathbb{H}, 1) \xrightarrow{\bar{h}} K(\mathbb{G}, 1) \xrightarrow{\bar{g}} K(\mathbb{L}, 1) \xrightarrow{\bar{\partial}} K(\mathbb{H}, 2) \xrightarrow{\bar{h}} K(\mathbb{G}, 2) \rightarrow \cdots \\
\xrightarrow{\bar{g}} K(\mathbb{L}, n-1) \xrightarrow{\bar{\partial}} K(\mathbb{H}, n) \xrightarrow{\bar{h}} K(\mathbb{G}, n) \xrightarrow{\bar{g}} K(\mathbb{L}, n) \xrightarrow{\bar{\partial}} K(\mathbb{H}, n+1) \xrightarrow{\bar{h}} \cdots
\end{array}
$$

where $\bar{\partial}: \Omega K(\mathbb{L}, n)=K(\mathbb{L}, n-1) \rightarrow K(\mathbb{H}, n)$ is the induced map (see Theorem 6.4.14 and Theorem 6.5.7 of [9]). By Theorem 6.4.14, Theorem 6.5.7 and Corollary 6.5 .8 of [9], we have an exact sequence

$$
\rightarrow[X, \Omega K(\mathbb{L}, n)] \xrightarrow{\bar{\partial}_{*}}[X, K(\mathbb{H}, n)] \xrightarrow{\bar{h}_{*}}[X, K(\mathbb{G}, n)] \xrightarrow{\overline{\bar{g}}_{*}}[X, K(\mathbb{L}, n)] \xrightarrow{\bar{\partial}_{*}} \cdots
$$

which is the long exact sequence
$\cdots \rightarrow H^{n-1}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} H^{n}(X ; \mathbb{H}) \xrightarrow{h_{*}} H^{n}(X ; \mathbb{G}) \xrightarrow{g_{*}} H^{n}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} \cdots$.
If $\alpha \in G_{p}^{n-1}(X ; \mathbb{L})$, then $p \top \alpha$ and consequently $p \top(\bar{\partial} \circ \alpha)$. This implies $\partial_{*}(\alpha)=$ $(\bar{\partial} \circ \alpha) \in G_{p}^{n}(X ; \mathbb{H})$. Hence we have the a graded sequence

$$
\cdots \rightarrow G_{p}^{n-1}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} G_{p}^{n}(X ; \mathbb{H}) \xrightarrow{h_{*}} G_{p}^{n}(X ; \mathbb{G}) \xrightarrow{g_{*}} G_{p}^{n}(X ; \mathbb{L}) \xrightarrow{\partial_{*}} \cdots .
$$

For any map $f: Y \rightarrow X$, we have the following commutative diagram:

Consider the following diagram:

Let $m \geq 1$ be an integer. We define the following subset of the homotopy set $[Y, X]:$

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{F})=\left\{f \in[Y, X] \mid G_{q}^{n}(Y ; \mathbb{F}) \supset f^{*}\left(G_{p}^{n}(X ; \mathbb{F})\right) \quad \text { for all } n \leq m\right\}
$$

A map $f: Y \rightarrow X$ is called an \mathbb{F} - (q, p)-cocyclic element preserving map up to m or an $\mathbb{F}-D C P_{q, p^{-}}^{m}$ map if $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{F})$ (see [7]).

By Theorem 5.2, we have the following diagram:

If $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{G}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{L})$, then the above diagram is commutative. In general, the homomorphism $f_{\mathbb{F}}^{*}: G_{p}^{m}(X ; \mathbb{F}) \rightarrow$ $G_{q}^{m}(Y ; \mathbb{F})$ is not well defined for $\mathbb{F}=\mathbb{H}, \mathbb{G}$ and \mathbb{L}.

The relation of $D C P_{q, p}^{m}(Y, X ; \mathbb{H}), D C P_{q, p}^{m}(Y, X ; \mathbb{G})$ and $D C P_{q, p}^{m}(Y, X ; \mathbb{L})$ is not clear, but if $0 \rightarrow \mathbb{H} \rightarrow \mathbb{G} \rightarrow \mathbb{L} \rightarrow 0$ is a split short exact sequence of abelian groups, then, the following inclusions of sets exist in $[Y, X]$ by Theorem 5.3 below:

Theorem 5.3. Let $0 \rightarrow \mathbb{H} \xrightarrow{h} \mathbb{G} \xrightarrow{g} \mathbb{L} \rightarrow 0$ be a split short exact sequence of abelian groups. Then the following relation holds:

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{G}) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

Proof. We have homomorphisms $r: \mathbb{L} \rightarrow \mathbb{G}$ and $\ell: \mathbb{G} \rightarrow \mathbb{H}$ such that $g \circ r=1_{\mathbb{L}}$, $\ell \circ h=1_{\mathbb{H}}$ and $h \circ \ell+r \circ g=1_{\mathbb{G}}$.

$$
0 \longrightarrow \mathbb{H} \underset{\ell}{\stackrel{h}{\rightleftarrows}} \mathbb{G} \underset{r}{\stackrel{g}{\rightleftarrows}} \mathbb{L} \longrightarrow 0
$$

We then have the following commutative diagram:

for any map $f: Y \rightarrow X$ and any $n \leq m$, where the rows are short exact sequences.

By the above commutative diagram, we know that

$$
f_{\mathbb{H}}^{*}=\ell_{2 *} \circ f_{\mathbb{G}}^{*} \circ h_{1 *} \text { and } f_{\mathbb{L}}^{*}=g_{2 *} \circ f_{\mathbb{G}}^{*} \circ r_{1 *} .
$$

By Proposition 5.1, the homomorphisms $h_{k *}, g_{k *}, r_{k *}$ and $\ell_{k *}$ are induced by maps for $k=1,2$. If $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{G})$ then $f_{\mathbb{G}}^{*}: G_{p}^{n}(X ; \mathbb{G}) \rightarrow G_{q}^{n}(Y ; \mathbb{G})$ is well defined for any $n \leq m$. Hence, we have $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap$ $D C P_{q, p}^{m}(Y, X ; \mathbb{L})$.

Theorem 5.4. Let $0 \rightarrow \mathbb{H} \xrightarrow{h} \mathbb{G} \xrightarrow{g} \mathbb{L} \rightarrow 0$ be a split short exact sequence of abelian groups. Suppose that q is an (n, \mathbb{G})-essential map for any $n \leq m$. Then the following equality holds:

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{G})=D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

Proof. We have the following diagram where two rows are split exact sequences by Proposition 4.3:
for any map $f: Y \rightarrow X$. By Proposition 5.1, the homomorphisms $h_{k *}, g_{k *}, r_{k *}$ and $\ell_{k *}$ are well defined for $k=1,2$. By the commutativity of the diagram in the proof of Theorem 5.3, we know that

$$
\begin{gathered}
f_{\mathbb{H}}^{*}=\ell_{2 *} \circ f_{\mathbb{G}}^{*} \circ h_{1 *} \text { and } f_{\mathbb{L}}^{*}=g_{2 *} \circ f_{\mathbb{G}}^{*} \circ r_{1 *} ; \\
f_{\mathbb{G}}^{*}=h_{2 *} \circ f_{\mathbb{H}}^{*} \circ \ell_{1 *}+r_{2 *} \circ f_{\mathbb{L}}^{*} \circ g_{1 *} .
\end{gathered}
$$

Since q is an (n, \mathbb{G})-essential map for any $n \leq m$, the set $G_{q}^{n}(Y ; \mathbb{G})$ is a group and hence we see that $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{G})$ if and only if $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{H}) \cap$ $D C P_{q, p}^{m}(Y, X ; \mathbb{L})$.

Lemma 5.5. $D C P_{q, p}^{m}\left(Y, X ; \oplus^{s} \mathbb{L}\right) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{L})$ for any $s \geq 2$.
Proof. Let $0 \rightarrow \mathbb{L} \rightarrow \mathbb{L} \oplus \mathbb{L} \rightarrow \mathbb{L} \rightarrow 0$ be the short exact sequence for the direct $\operatorname{sum} \mathbb{L} \oplus \mathbb{L}$. By Theorem 5.3, we have

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{L} \oplus \mathbb{L}) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

Furthermore, let $0 \rightarrow \oplus^{j} \mathbb{L} \rightarrow \oplus^{j+k} \mathbb{L} \rightarrow \oplus^{k} \mathbb{L} \rightarrow 0$ be the short exact sequence for the direct sum $\oplus^{j+k} \mathbb{L}$ for $j, k \geq 1$. Then by induction we have

$$
D C P_{q, p}^{m}\left(Y, X ; \oplus^{j+k} \mathbb{L}\right) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

Proposition 5.6. Let \boldsymbol{G} be a finitely generated abelian group. Assume that $\boldsymbol{G}=\boldsymbol{F} \oplus \boldsymbol{T}$ where $\boldsymbol{F} \neq 0$ is the free part and $\boldsymbol{T} \neq 0$ is the torsion part. Let $\boldsymbol{F}=\oplus^{s} \mathbb{Z}$ and $\boldsymbol{T}=\oplus^{t} \mathbb{Z}_{p_{t}^{a_{t}}}$ where p_{t} is a prime number and a_{t} is a positive integer for any t. Let M_{T} of \boldsymbol{T} be a subgroup of \boldsymbol{T} defined by $M_{T}=\oplus^{i} \mathbb{Z}_{q_{i}{ }_{i}}$ such that $q_{i}^{b_{i}} \neq q_{j}^{b_{j}}$ for $i \neq j$ (that is, M_{T} is defined making use of all the different direct summands in \boldsymbol{T}). Then the following inclusion holds:

$$
D C P_{q, p}^{m}(Y, X ; \boldsymbol{G}) \subset D C P_{q, p}^{m}\left(Y, X ; \mathbb{Z} \oplus M_{T}\right)
$$

Proof. By Lemma 5.5, we have the result.
Corollary 5.7. Assume the same conditions as in Proposition 5.6. Suppose that q is an essential map. Then $D C P_{q, p}^{m}(Y, X ; \boldsymbol{G})=D C P_{q, p}^{m}\left(Y, X ; \mathbb{Z} \oplus M_{T}\right)$.

Proposition 5.8. If the homomorphism $g: \mathbb{G} \rightarrow \mathbb{L}$ has a right inverse homomorphism $r: \mathbb{L} \rightarrow \mathbb{G}$, then

$$
D C P_{q, p}^{m}(Y, X ; \mathbb{G}) \subset D C P_{q, p}^{m}(Y, X ; \mathbb{L})
$$

If $g: \mathbb{G} \rightarrow \mathbb{L}$ is an isomorphism, then $D C P_{q, p}^{m}(Y, X ; \mathbb{G})=D C P_{q, p}^{m}(Y, X ; \mathbb{L})$. Proof. Let $f \in D C P_{q, p}^{m}(Y, X ; \mathbb{G})$ and let $\alpha \in G_{p}^{n}(X ; G)$. From the induced maps

$$
K(\mathbb{L}, n) \xrightarrow{\bar{r}} K(\mathbb{G}, n) \xrightarrow{\bar{g}} K(\mathbb{L}, n),
$$

we have the following commutative diagram:

It follows that $\bar{g}_{2 *} \circ f_{\mathbb{G}}^{*}=f_{\mathbb{L}}^{*} \circ \bar{g}_{1 *}$. Hence composing the induced right inverse homotopy map \bar{r}_{*}, we have

$$
f_{\mathbb{L}}^{*}=f_{\mathbb{L}}^{*} \circ \bar{g}_{1 *} \circ \bar{r}_{1 *}=\bar{g}_{2 *} \circ f_{\mathbb{G}}^{*} \circ \bar{r}_{1 *} .
$$

If $\alpha \in G_{p}^{n}(X: \mathbb{L})$, then we have $f_{\mathbb{L}}^{*}(\alpha)=\left(\bar{g}_{2 *} \circ f_{\mathbb{G}}^{*} \circ \bar{r}_{1 *}\right)(\alpha) \in G_{q}^{n}(Y: \mathbb{L})$ by the definition of f. This completes the proof.

References

[1] M. Arkowitz, Introduction to Homotopy Theory, Universitext, Springer, New York, 2011.
[2] M. Arkowitz, G. Lupton, and A. Murillo, Subgroups of the group of self-homotopy equivalences, Groups of homotopy self-equivalences and related topics (Gargnano, 1999), 2132, Contemp. Math., 274, Amer. Math. Soc., Providence, RI, 2001.
[3] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
[4] B. Gray, Homotopy Theory, Academic Press, 1975.
[5] H. B. Haslam, G-spaces and H-spaces, Thesis, University of California at Irvine, 1969.
[6] \qquad , G-spaces mod F and H-spaces mod F, Duke Math. J. 38 (1971), 671-679.
[7] J.-R. Kim and N. Oda, Cocyclic element preserving pair maps and fibrations, Topology Appl. 191 (2015), 82-96.
[8] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), no. 1, 63-71.
[9] C. R. F. Maunder, Algebraic Topology, Cambridge University Press, 1980.
[10] N. Oda, The homotopy set of the axes of pairings, Canad. J. Math. 42 (1990), no. 5, 856-868.
[11] , Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math. Sci. 28 (1992), no. 1, 83-97.
[12] K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
[13] G. W. Whitehead, Elements of homotopy theory, Graduate texts in Mathematics 61, Springer-Verlag, New York Heidelberg Berlin, 1978.
[14] Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001), no. 2, 173181.

Ho-Won Choi

Department of Mathematics
Korea University
Seoul 702-701, Korea
E-mail address: howon@korea.ac.kr
Jae-Ryong Kim
Department of Mathematics
Kookmin University
Seoul 136-702, Korea
E-mail address: kimjr@kookmin.ac.kr
Nobuyuki Oda
Department of Applied Mathematics
Faculty of Science
Fukuoka University
Fukuoka 814-0180, Japan
E-mail address: odanobu@cis.fukuoka-u.ac.jp

[^0]: Received September 13, 2016; Accepted December 26, 2016.
 2010 Mathematics Subject Classification. Primary 55Q05; Secondary 55P30.
 Key words and phrases. cocyclic map, coGottlieb group.
 The first author was partly supported by NRF-2015R1C1A1A01055455.
 The second author was supported by Kookmin University Research Fund.
 The third author was partly supported by JSPS KAKENHI Grant Number JP15K04884.

