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THE GENERALIZED COGOTTLIEB GROUPS, RELATED

ACTIONS AND EXACT SEQUENCES

Ho-Won Choi, Jae-Ryong Kim, and Nobuyuki Oda

Abstract. The generalized coGottlieb sets are not known to be groups in
general. We study some conditions which make them groups. Moreover,
there are actions on the generalized coGottlieb sets which are different
from known actions up to now. We give related exact sequence of the
generalized coGottlieb sets. Using them, we obtain certain results related
to the maps which preserve generalized coGottlieb sets.

1. Introduction

The Gottlieb group Gn(X) (n ≥ 1) was defined by Gottlieb [3] and the
coGottlieb group Gn(X ;F) by Haslam [5, 6] for any abelian group F. The
purpose of this paper is to study some properties of the generalizations of the
coGottlieb group, namely the homotopy set DG(X,Z) of cocyclic maps by
Varadarajan [12], the homotopy set p⊤(X,Z) of p-cocyclic maps for a map
p : X → A by Oda [10], and the subset Gnp (X ;F) of p-cocyclic elements in

Hn(X ;F) by Yoon [14]. We have relations : DG(X,Z) = (1X)⊤(X,Z) for the
identity map 1X : X → X and Gnp (X ;F) = p⊤(X,K(F, n)) for the Eilenberg-
MacLane space K(F, n) (see Section 2 for the definitions).

When Z is a grouplike space, the subset p⊤(X,Z) is not known to be closed
under the addition +

·
in general, even if Z = K(F, n), although the homotopy

set [X,Z] is a group. However, if Z is a grouplike space, then we see by Propo-
sition 2.1 that p⊤(X,Z) contains the unit 0 and the inverse −α ∈ p⊤(X,Z)
for any α ∈ p⊤(X,Z) and, of course, satisfies the associativity; moreover, if
α ∈ p⊤(X,Z), then kα ∈ p⊤(X,Z) for any integer k by Theorem 2.3. For
further study we introduce the following terminology (Definition 2.4): Let n
be a positive integer and F an abelian group. A map p : X → A is said to
be an (n,F)-essential map of the coGottlieb group of X if the addition + is
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closed in Gnp (X ;F). A map p : X → A is said to be an essential map if it is an
(n,F)-essential map of the coGottlieb group of X for every n and F.

More generally, we call a map p : X → A a strongly essential (or s-essential)
map if the addition +

·
is closed in p⊤(X,Y ) for any grouplike spaces Y (Def-

inition 4.5),
In Section 3 we consider an action of Hn(A;F) on Hn(X ;F). For any ele-

ments a ∈ Hn(A;F) and f ∈ Hn(X ;F), we define an element a ∗ f ∈ Hn(X ;F)
by a∗f = a◦p+f . Here, the symbol + is the addition in Hn(X ;F) induced by
the Hopf structure m : K(F, n)×K(F, n) → K(F, n). Then we have a pairing

µ : Hn(A;F)×Hn(X ;F) → Hn(X ;F)

given by µ(a, f) = a ∗ f = a ◦ p+ f for any a ∈ Hn(A;F) and f ∈ Hn(X ;F).
We show that there exists an action of the coGottlieb group Gn(A;F) on the
set Gnp (X ;F) defined by µ(f, a) = a ∗ f (Theorem 3.4):

µ : Gn(A;F)×Gnp (X ;F) → Gnp (X ;F).

In Section 4 we prove that the following sequence is exact as sets for any
spaces X,A, Y1, Y2 and any map p : X → A (Theorem 4.2):

0 −→ p⊤(X,Y1)
i1♯
−−→ p⊤(X,Y1 × Y2)

p2♯
−−→ p⊤(X,Y2) −→ 0.

The following result is proved (Theorem 4.7(3)): If Y1 and Y2 are grouplike
spaces and p : X → A is strongly essential, then there exists an isomorphism

of groups

p⊤(X,Y1 × Y2) ∼= p⊤(X,Y1)× p⊤(X,Y2).

Let H and L be any abelian groups and p : X → A a map. A homomorphism
h : H → L induces a function h∗ : Gnp (X ;H) → Gnp (X ;L) (Proposition 5.1)
and in Section 5 we study some properties of them. Consider the following
diagram:

Y

q

��

f
// X

p

��

B A

Let m ≥ 1 be an integer. We define the following subset of the homotopy set
[Y,X ]:

DCPmq,p(Y,X ;F) = {f ∈ [Y,X ] | Gnq (Y ;F) ⊃ f∗(Gnp (X ;F)) for all n ≤ m}.

A map f : Y → X is called an F-(q, p)-cocyclic element preserving map up to

m or an F-DCPmq,p-map if f ∈ DCPmq,p(Y,X ;F) ([7]).

In Theorem 5.3 we prove that if 0 → H
h

−−→ G
g

−−→ L → 0 is a split short
exact sequence of abelian groups, then the following relation holds:

DCPmq,p(Y,X ;G) ⊂ DCPmq,p(Y,X ;H) ∩DCPmq,p(Y,X ;L),
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and if, in addition, q is an (n,G)-essential map for any n ≤ m, then the equality
DCPmq,p(Y,X ;G) = DCPmq,p(Y,X ;H) ∩DCPmq,p(Y,X ;L) holds (Theorem 5.4).

2. Certain properties of coGottlieb groups

We consider based topological spaces and based maps in this paper, there-
fore, a space is a based topological space and amap is a based map. The identity
map for a space X is denoted by 1X : X → X . The symbol f ≃ g : X → Y

means a based homotopy and the homotopy class of a map f : X → Y is
denoted by [f ] : X → Y . We use the same symbol f for a map f and its
homotopy class [f ] in some cases for simplicity. The set of homotopy classes of
maps from X to Y is denoted by [X,Y ].

For any maps h : A→ B and u : A→ C, let

h∆u = (h× u) ◦∆ : A
∆
−→ A×A

h×u
−−−→ B × C

be the composition of the diagonal map ∆ : A→ A×A and the product map
h× u : A ×A → B × C. Let iX,Y : X ∨ Y → X × Y be the natural inclusion
for any spaces X and Y .

Let h : A → B and u : A → C be any maps. If there exists a map
θ : A→ B ∨ C of type h∆u : A→ B × C, namely

iB,C ◦ θ ≃ h∆u : A→ B × C,

then we write h⊤u. If h⊤u, then we have the relation

(h′ ◦ h ◦ d)⊤(u′ ◦ u ◦ d)

for any d : D → A, h′ : B → B′ and u′ : C → C′ by Theorems 3.3 and 3.4 of
[10].

For any map p : X → A, we define

p⊤(X,Z) = {[a] : X → Z | p⊤a} ⊂ [X,Z]

as in [10]. If p = 1X , then we recover the set

DG(X,Z) = {[a] : X → Z | 1X⊤a} ⊂ [X,Z]

defined by Varadarajan [12]. Let K(F, n) be the Eilenberg-MacLane space.
The coGottlieb group or the coevaluation subgroup

Gn(X ;F) = DG(X,K(F, n)) = {[a] : X → K(F, n) | 1X⊤a} ⊂ Hn(X ;F)

was defined by Haslam [5, 6] for any abelian group F. Yoon [14] defined the

generalized coGottlieb set Gnp (X ;F) = Gn(X, p,A;F) of Hn(X ;F) by

Gnp (X ;F) = p⊤(X,K(F, n)) = {[a] : X → K(F, n) | p⊤a} ⊂ Hn(X ;F)

for any map p : X → A.
We begin by studying some properties of the subset p⊤(X,Z) of [X,Z],

where Z is a grouplike space of Whitehead [13]:

Proposition 2.1. If Z is a grouplike space, then the set p⊤(X,Z) satisfies the
following:
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(1) If α, β, γ ∈ p⊤(X,Z), then (α+ β) + γ = α+ (β + γ).
(2) 0 ∈ p⊤(X,Z).
(3) If α ∈ p⊤(X,Z), then −α ∈ p⊤(X,Z).
(4) (The case p = 1X) α, β ∈ DG(X,Z) implies α+ β ∈ DG(X,Z).

Proof. (1) The associativity holds in [X,Z]. However, the addition + is not
always closed in p⊤(X,Z).

(2) Since p⊤0 holds, we have 0 ∈ p⊤(X,Z).
(3) If α ∈ p⊤(X,Z), then p⊤α and −α = ν ◦ α for the inversion ν : Z → Z.

Since p⊤(ν ◦ α), we have −α ∈ p⊤(X,Z).
(4) This is the result of Theorem 4.2 of Lim [8]. �

(Remark : If Z = K(F, n), then (4) is a result of Section 5 of Haslam [6].
However, it is not known when p⊤(X,Z) is a group for p 6= 1X , ∗.)

The following is the case where Z = K(F, n) in Proposition 2.1.

Corollary 2.2. The set Gnp (X ;F) satisfies the following:

(1) If α, β, γ ∈ Gnp (X ;F), then (α+ β) + γ = α+ (β + γ).
(2) 0 ∈ Gnp (X ;F).
(3) If α ∈ Gnp (X ;F), then −α ∈ Gnp (X ;F).
(4) α, β ∈ Gn(X ;F) implies α+ β ∈ Gn(X ;F).

Theorem 2.3. Let p : X → A be a map and Z a grouplike space. If α ∈
p⊤(X,Z), then kα ∈ p⊤(X,Z) for any integer k.

Proof. If k = 0,±1, the result is clear by Proposition 2.1. Let k ≥ 2 be
a natural number. Let ∆k : Z →

∏
k Z be the k-hold diagonal map, and

mk :
∏
k Z → Z the k-hold multiplication. If f ∈ p⊤(X,Z), then p⊤f and

hence p⊤(mk ◦∆k ◦ f). We see

mk ◦∆k ◦ f = mk ◦ (
∏

k

f) ◦∆k = kf.

It follows that kf ∈ p⊤(X,Z). �

By Corollary 2.2, the subset Gnp (X ;F) of Hn(X : F) contains the unit 0 and
the inverse −α ∈ Gnp (X ;F) for any α ∈ Gnp (X ;F) and of course satisfies the
associativity, although Gnp (X ;F) is not proved to be closed under the addition
+ in general. Therefore we define the following:

Definition 2.4. Let n be a positive integer and F an abelian group. A map
p : X → A is said to be an (n,F)-essential map of the coGottlieb group of X
if the addition + is closed in Gnp (X ;F). A map p : X → A is said to be an
essential map if it is an (n,F)-essential map of the coGottlieb group of X for
every n and F.

We see that a map p : X → A is an (n,F)-essential map if p⊤α and p⊤β
implies p⊤(α + β) for any α, β ∈ [X,K(F, n)]. Clearly p is (n,F)-essential if
and only if Gnp (X ;F) is a subgroup of Hn(X ;F).
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Example 2.5. The identity map 1X : X → X is an essential map, since the
coGottlieb set Gn1X (X ;F) is an abelian group by Theorem 4.2 of [8]. If p = ∗ is
the constant map, then Gn∗ (X ;F) = Hn(X ;F); and hence ∗ is also an essential
map. Any cocyclic map p : X → A is essential, since a map p : X → A is
a cocyclic map if and only if Gnp (X ;F) = Hn(X ;F) for every abelian group F

([14]).

Example 2.6. The inclusion relation Gnp (X ;F) ⊂ Gnr◦p(X ;F) holds for any
maps p : X → A and r : A → B. Hence if r : A → B is a map with a left
homotopy inverse map ℓ : B → A and p : X → A is an (n,F)-essential map,
then we see

Gnp (X ;F) ⊂ Gnr◦p(X ;F) ⊂ Gnℓ◦r◦p(X ;F) ⊂ Gn1A◦p(X ;F) ⊂ Gnp (X ;F),

or Gnr◦p(X ;F) = Gnp (X ;F). Hence r ◦ p : X → B is also (n,F)-essential.
Any map p : X → A with a left homotopy inverse ℓ : A → X is essential,

since Gn1X (X ;F) ⊂ Gnp (X ;F) ⊂ Gnℓ◦p(X ;F) = Gn1X (X ;F) or Gn1X (X ;F) =

Gnp (X ;F).
Any homotopy equivalence is also an essential map.

Proposition 2.7. If p : X → X is a homotopy idempotent map, that is,

p2 = p ◦ p ≃ p, then α ◦ p+ β ∈ Gnp (X ;F) for any α, β ∈ Gnp (X ;F).

Proof. Let α, β ∈ Gnp (X ;F). Then p⊤α and p⊤β hold and we have (p◦p)⊤(α◦
p+ β) by Theorem 3.9(2) of [10]. It follows that p⊤(α ◦ p+ β) or α ◦ p+ β ∈
Gnp (X ;F). �

Corollary 2.8. If there exists p : X → X such that p2 ≃ p and β ◦ p ≃ β for

every β ∈ Gnp (X ;F), then p is an essantial map.

Example 2.9. Assume that Hn(X ;F) ∼= 0 or Zqn where qn is a prime number
for any n ≥ 1. Then Gnp (X ;F) ∼= 0 or Zqn by Theorem 2.3. It follows that all
p : X → A is an essential map of coGottlieb group of X .

Proposition 2.10. If p : X → A is an essential map, then the following hold.

(1) The induced function k : Gnp (X ;F) → Gnp (X ;F) defined by k(α) = kα

for any integer k is a homomorphism.

(2) There exists a bilinear multiplication µ : Z × Gnp (X ;F) → Gnp (X ;F)
given by µ(k, α) = kα.

Proof. (1) is obtained by Theorem 2.3.
(2) Define µ : Z×Gnp (X ;F) → Gnp (X ;F) by µ(k, α) = kα. Then we have

µ(h, µ(k, α)) = h(kα), µ(k + k′, α) = µ(k, α) + µ(k′, α),

µ(k, α+ β) = µ(k, α) + µ(k, β).
�
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3. Action Hn(A; F) on Gn

p
(X; F) for a given map p : X → A

Let ∇ = ∇Z : Z ∨ Z → Z the folding map. For any map β : B → Z and
γ : C → Z, we define a map

β∇γ = ∇ ◦ (β ∨ γ) : B ∨ C
β∨γ

−−−−→ Z ∨ Z
∇

−−→ Z.

A map θ : A→ B ∨ C defines an addition

β +̇ γ = (β∇γ) ◦ θ : A→ Z

for any map β : B → Z and γ : C → Z; dually, a map µ : X × Y → Z defines
an addition

χ +
·
η = µ ◦ (χ∆η) : A→ Z

for any map χ : A→ X and η : A→ Y (see [11]).
Now we consider an action of Hn(A;F) on Hn(X ;F). For any elements

a ∈ Hn(A;F) and f ∈ Hn(X ;F), we define an element a ∗ f ∈ Hn(X ;F) by

a ∗ f = a ◦ p+ f.

Here, the symbol + is the addition in Hn(X ;F) induced by the Hopf structure
m : K(F, n)×K(F, n) → K(F, n). Then we have a pairing

µ : Hn(A;F)×Hn(X ;F) → Hn(X ;F)

given by µ(a, f) = a ∗ f = a ◦ p+ f for any a ∈ Hn(A;F) and f ∈ Hn(X ;F).
We note that µ is a surjective homomorphims of groups.

Proposition 3.1. The pairing µ : Hn(A;F)×Hn(X ;F) → Hn(X ;F) satisfies
the following relations :

(1) a∗ 0 = a◦p for any a ∈ Hn(A;F) and 0 ∗ f = f for any f ∈ Hn(X ;F).
(2) a ∗ (b ∗ f) = (a+ b) ∗ f for any a, b ∈ Hn(A;F) and any f ∈ Hn(X ;F).
(3) (h ◦ a) ∗ (h ◦ f) = h ◦ (a ∗ f) for any a ∈ Hn(A;F), f ∈ Hn(X ;F) and

any map h : K(F, n) → K(G, n).

Proof. (1) For any a ∈ Hn(A;F) and f ∈ Hn(X ;F), we have

a ∗ 0 = a ◦ p+ 0 = a ◦ p, 0 ∗ f = 0 ◦ p+ f = 0+ f = f.

(2) For any a, b ∈ Hn(A;F), f ∈ Hn(X ;F) and any f ∈ Hn(X ;F), we have

a ∗ (b ∗ f) = a ◦ p+ (b ∗ f) = a ◦ p+ (b ◦ p+ f)

= (a ◦ p+ b ◦ p) + f = (a+ b) ◦ p+ f = (a+ b) ∗ f.

(3) For any a ∈ Hn(A;F) and any h : K(F, n) → K(G, n) we have

(h ◦ a) ∗ (h ◦ f) = h ◦ a ◦ p+ h ◦ f = h ◦ (a ◦ p+ f) = h ◦ (a ∗ f). �

Corollary 3.2. For any a, b ∈ Hn(A;F) and any f, g ∈ Hn(X ;F), we have

the following relations:

a ∗ (f + g) = a ◦ p+ (f + g) = a ∗ f + g = f + a ∗ g,

a ∗ f = a ◦ p+ f = a ∗ 0 + f,
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(a+ b) ∗ (f + g) = (a+ b) ∗ f + g = a ∗ f + b ∗ g = b ∗ (a ∗ f + g).

Now we consider an action of Hn(A;F) on Gnp (X ;F) for a given map p :
X → A. For any element f ∈ Gnp (X ;F), there exists a coaffiliated map ψp,f :
X → A ∨K(F, n) such that j ◦ ψp,f ≃ (p× f) ◦∆ as in the following diagram:

X

∆

��

ψp,f
// A ∨K(F, n)

j

��

X ×X
p×f

// A×K(F, n)

For a ∈ Hn(A;F) and b ∈ Hn(K(F, n);F), we define a map a +̇ b : X →
K(F, n) by the composition:

a +̇ b : X
ψp,f

−−−−→ A ∨K(F, n)
a∨b

−−−→ K(F, n) ∨K(F, n)
∇

−−→ K(F, n).

Then a +̇ b is an element of Hn(X ;F). Moreover, by Theorem 2.7(2) of [11]
(set h = p, r = f , f = g = 1K(F,n), α = a and δ = b in the theorem), we have

a +̇ b = a ◦ p+ b ◦ f,

where +̇ is the addition induced by ψp,f : X → A∨K(F, n) as above and + is
the addition in Hn(X ;F) which is denoted by +

·
in [11]. Therefore, we have

a pairing

µ : Hn(A;F)×Gnp (X ;F) → Hn(X ;F)

given by µ(a, f) = a +̇ ιK(F,n) (= a ◦ p+ f = a ∗ f) for any a ∈ Hn(A;F) and
f ∈ Gnp (X ;F).

Remark 3.3. For a given map g : K(G, n) → K(F, n) by replacing a ∈ Hn(A;F)
by a = g ◦ l ∈ Hn(A;F) for l ∈ Hn(A;G) in the above pairing, we can get a
pairing

µ : Hn(A;G)×Gnp (X ;F) → Hn(X ;F)

defined by µ(l, f) = g ◦ l ◦ p+ f .

Theorem 3.4. There exists an action of the coGottlieb group Gn(A;F) on the

set Gnp (X ;F), that is, the function

µ : Gn(A;F)×Gnp (X ;F) → Gnp (X ;F)

defined by µ(a, f) = a ∗ f for any a ∈ Gn(A;F) and f ∈ Gnp (X ;F) is well

defined.

Proof. If a ∈ Gn(A;F) and f ∈ Gnp (X ;F), then 1A⊤a and p⊤f . It follows
that (1A ◦ p)⊤(a ◦ p + f) or p⊤(a ◦ p + f) by Theorem 3.9(2) of [10]. Hence
a ∗ f = a ◦ p+ f ∈ Gnp (X ;F). �
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Proposition 3.5. (1) For any a ∈ Hn(A;F) and f ∈ Hn(X ;F), the in-

duced homomorphism (a ∗ f)# : πi(X) → πi(K(F, n)) satisfies

(a ∗ f)#(x) = a#(p#(x)) + f#(x)

for any x ∈ πi(X) and i ≥ 0.
(2) For any f ∈ Gnp (X ;F) and a ∈ Hn(A;F), the induced homomorphism

(a ∗ f)∗ : Hi(K(F, n);G) → Hi(X ;G) satisfies

(a ∗ f)∗(x) = (a ◦ p)∗(x) + f∗(x)

for any x ∈ Hi(K(F, n);G) and i ≥ 1.

Proof. (1) Since a ∗ f = a ◦ p+ f , we have

(a ∗ f)#(x) = (a ◦ p+ f) ◦ x = (a ◦ p ◦ x) + (f ◦ x) = a#(p#(x)) + f#(x).

(2) Since f ∈ Gnp (X ;F), we have a ∗ f = a ◦ p+ f = a +̇ ιK(F,n). Therefore,

(a ∗ f)∗(x) = x ◦ (a +̇ 1K(F,n)) = (x ◦ a) +̇ (x ◦ 1K(F,n))

= (x ◦ a) +̇ x = (x ◦ a ◦ p) +
·
(x ◦ f) = (a ◦ p)∗(x) + f∗(x)

by Theorem 2.7(2) of [11]. �

Arkowitz, Lupton and Murillo [2] defined

E∗(X) = {f ∈ E(X) | f∗ = 1 : Hi(X ;Z) → Hi(X ;Z) for all i}

for any space X , and

E#(X) = {f ∈ E(X) | f# = 1 : πi(X) → πi(X) for all i ≤ N = dim(X)}

for any CW-complex X . We define

E∗

n,F(X) = {f ∈ E(X) | f∗ = 1 : Hi(X ;F) → Hi(X ;F) for all i ≤ n}.

Example 3.6. Let X = K(F, n). Let ι : X → X be the identity map and
a ∈ Hn(A;F). Then we have the following results:

(1) a ∗ ι ∈ E#(X) if and only if a# ◦ p# = 0 : πn(X) → πn(A) →
πn(K(F, n)).

(2) Suppose that ι ∈ Gnp (X,F). Then, a ∗ ι ∈ E∗

n,F(X) if and only if

p∗ ◦ a∗ = 0 : Hn(X ;F) → Hn(A;F) → Hn(X ;F).

(1) is obtained by Proposition 3.5(1).
(2) First assume that a ∗ ι ∈ E∗

n,F(X). By Proposition 3.5(2) and the condi-

tion a ∗ ι ∈ E∗

n,F(X), we have

p∗ ◦ a∗ = 0 : Hn(X ;F) → Hn(A;F) → Hn(X ;F).

Conversely assume that p∗ ◦ a∗ = 0 : Hn(X ;F) → Hn(A;F) → Hn(X ;F).
Then for any x ∈ Hn(X ;F), we get

(a ∗ ι)∗(x) = (a ◦ p)∗(x) + ι∗(x) = ι∗(x) = x.

It follows that

((−a) ∗ ι) ◦ (a ∗ ι) = (a ∗ ι)∗((−a) ∗ ι) = (−a) ∗ ι = ((−a) ∗ ι)∗(ι) = ι.
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Similarly, we have ((−a) ∗ ι)∗(x) = x and (a ∗ ι) ◦ ((−a) ∗ ι) = ι. Hence a ∗ ι is
a homotopy equivalence.

Remark 3.7. If 1K(F,n)∈G
n
p (K(F, n),F), thenGnp (K(F, n),F)=Hn(K(F, n),F).

Let X = K(F, n) and p : X → A. Suppose that the induced cohomology ho-
momorphism p∗ = 0 : Hn(A;F) → Hn(X ;F) in Example 3.6(2). Then for
a ∈ Hn(A;F) we have a ◦ p = p∗(a) = 0, and

a ∗ ι = (a ◦ p) +
·
1K(F,n) = 0 +

·
1K(F,n) = ι ∈ [X,X ].

If A is a co-Hopf space, then we have the following sufficient conditions for
the map p : X → A to be an (n,F)-essential map of the coGottlieb group of X .

Theorem 3.8. Let A be co-Hopf space. Then the map p : X → A is an (n,F)-
essential map of the coGottlieb group of X if one of the following conditions is

satisfied :

(1) p∗ : Hn(A;F) → Hn(X ;F) is surjective.

(2) p : X → A is an (n+ 1)-equivalence.

Proof. (1) Consider the function µ : Gn(A;F) × Gnp (X ;F) → Gnp (X ;F) in
Theorem 3.4. Since 0 ∈ Gnp (X ;F), we have µ(a, 0) = ap + 0 = ap for all
a ∈ Gn(A;F). Then p∗(Gn(A;F)) is a subset of Gnp (X ;F).

Since A be co-Hopf space, we haveGn(A;F) = Hn(A;F). If p∗ : Hn(A;F) →
Hn(X ;F) is surjective, then p∗(Gn(A;F)) = Hn(X ;F). Since p∗(Gn(A;F)) ⊆
Gnp (X ;F), we get

Gnp (X ;F) ⊆ Hn(X ;F) = p∗(Gn(A;F)) ⊆ Gnp (X ;F).

It follows that Gnp (X ;F) = Hn(X ;F).
(2) If the map p : X → A is an (n+ 1)-equivalence, then we have the result

by virtue of the Proposition 8.2.2 in Arkowitz [1]: Let f : X → Y be an n-

equivalence, let Z be a space, and let f∗ : [Y, Z] → [X,Z] be the induced map.

If πi(Z) = 0 for i ≥ n, then f∗ is a surjection. If πi(Z) = 0 for i ≥ n+1, then
f∗ is an injection. �

Example 3.9. Let X = CPn, the complex projective n-space and A = S2n,
the 2n-sphere. Let p : CPn → S2n be the natural projection. Then p∗ :
Hn(S2n;Z) → Hn(CPn;Z) is an isomorphism and satisfies the condition of
Theorem 3.8(1).

4. Exact sequences

Let i1 : Y1 → Y1×Y2, i2 : Y1 → Y1×Y2 be the inclusions and p1 : Y1×Y2 →
Y1, p2 : Y1 × Y2 → Y2 be the projections as is shown in the following diagram.

Y1
i1

// Y1 × Y2
p1

oo
p2

// Y2
i2

oo
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Let α∆β ∈ [X,Y1 × Y2] be the element defined by elements α ∈ [X,Y1] and
β ∈ [X,Y2]. We define a set function

Φ : p⊤(X,Y1 × Y2) → p⊤(X,Y1)× p⊤(X,Y2),

by Φ(α∆β) = (p1 ◦ (α∆β), p2 ◦ (α∆β)) = (α, β) for any α∆β ∈ p⊤(X,Y1×Y2);
if p⊤(α∆β), then we see p⊤(p1 ◦ (α∆β)) and p⊤(p2 ◦ (α∆β)).

Proposition 4.1. The set function Φ : p⊤(X,Y1×Y2) → p⊤(X,Y1)×p
⊤(X,Y2)

is a monomorphism for any X,A, Y1, Y2 and p : X → A.

Proof. We have the result by the universality of the product space Y1×Y2. �

Theorem 4.2. The following sequences are exact as sets for any spaces X,A,

Y1, Y2 and any map p : X → A.

0 −→ p⊤(X,Y1)
i1♯
−−→ p⊤(X,Y1 × Y2)

p2♯
−−→ p⊤(X,Y2) −→ 0;

0 −→ p⊤(X,Y2)
i2♯
−−→ p⊤(X,Y1 × Y2)

p1♯
−−→ p⊤(X,Y1) −→ 0.

Proof. We prove the first exact sequence; the second one is proved similarly.
For any α2 ∈ p⊤(X,Y2), we have ∗∆α2 = i2 ◦ α2 ∈ p⊤(X,Y1 × Y2) and

p2 ◦ (∗∆α2) = α2.
Assume that α1∆α2 ∈ p⊤(X,Y1 × Y2) and p2♯(α1∆α2) = ∗. Then we have

α2 ≃ ∗ and hence

α1∆α2 = α1∆∗ = i1 ◦ α1,

where α1 = p1 ◦ (α1∆α2) ∈ p⊤(X,Y1).

X

α1

{{

α1∆α2

��

p
// A

Y1
i1

// Y1 × Y2
p1oo

p2 // Y2
i2

oo

Finally, the inclusion i1♯ : p
⊤(X,Y1) → p⊤(X,Y1 × Y2) is a monomorphism by

the universality of the product space Y1 × Y2. �

Proposition 4.3. If 0 → H → G → L → 0 is a split short exact sequence of

abelian groups, then there exists the following short exact sequence of sets :

0 → Gnp (X ;H) → Gnp (X ;G) → Gnp (X ;L) → 0.

Proof. The sequence 0 → H → G → L → 0 is a split short exact sequence if and
only if G ∼= H⊕ L. The product space K(H, n)×K(L, n) is an Eilenberg-Mac
Lane space of type (H⊕L, n). Hence the upper exact sequence in Theorem 4.2
becomes the following exact sequence:

0 → p⊤(X,K(H, n))
i1♯
−−→ p⊤(X,K(H, n)×K(L, n))

p2♯
−−→ p⊤(X,K(L, n)) → 0,

which is the exact sequence in question. �
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Corollary 4.4. Let 0 → H → G → L → 0 be a split short exact sequence of

abelian groups. If p is an (n,F)-essential map for any F = H,G and L, then

there exists the following isomorphism of groups :

Gnp (X : G) ∼= Gnp (X : H)⊕Gnp (X : L).

Proof. If p is an (n,F)-essential map for any F = H,G and L, then the short
exact sequence of sets in Proposition 4.3 becomes the short exact sequence of
the groups with a cross section, and hence the result follows. �

Definition 4.5. A map p : X → A is said to be a strongly essential (or s-
essential) map if the addition +

·
is closed in p⊤(X,Y ) for any grouplike spaces

Y .

Remark 4.6. The term ‘(n,F)-essential map’ is defined for the case where Y =
K(F, n). The term ‘strongly essential map’ is used for grouplike spaces Y .

Theorem 4.7. Let X and A be any spaces and p : X → A any map. If

α1 ∈ p⊤(X,Y1) and α2 ∈ p⊤(X,Y2), then the following hold.

(1) α1∆∗, ∗∆α2 ∈ p⊤(X,Y1 × Y2).
(2) If Y1 and Y2 are Hopf spaces, then α1∆α2 = (α1∆∗) +

·
(∗∆α2), where

+
·

is the addition in [X,Y1 × Y2].

(3) If Y1 and Y2 are grouplike spaces and p : X → A is strongly essential,

then α1∆α2 ∈ p⊤(X,Y1 × Y2), and hence there exists an isomorphism

of groups

p⊤(X,Y1 × Y2) ∼= p⊤(X,Y1)× p⊤(X,Y2).

Proof. (1) If p⊤α1 and p⊤α2, then p⊤(i1 ◦α1) and p⊤(i2 ◦α2). Since α1∆∗ =
i1 ◦ α1 and ∗∆α2 = i2 ◦ α2, we have p⊤(α1∆∗) and p⊤(∗∆α2).

(2) We see (α1∆∗) +
·
(∗∆α2) = (α1 +

·
∗)∆(∗ +

·
α2) = α1∆α2.

(3) If p : X → A is strongly essential, then p⊤(X,Y1 × Y2) is a group. It
follows then that p⊤α1 and p⊤α2 imply p⊤(α1∆α2) by the results of Parts (1)
and (2).

p⊤(X,Y1 × Y2)
∼= //

∩
��

p⊤(X,Y1)× p⊤(X,Y2)

∩
��

[X,Y1 × Y2]
∼= // [X,Y1]× [X,Y2] �

Remark 4.8. Suppose that Y1 and Y2 are Hopf spaces with multiplications
m1 : Y1×Y1 → Y1 and m2 : Y2×Y2 → Y2 respectively. Then the multiplication
of Y1 × Y2 in Theorem 4.7(2) is given by

(m1×m2)◦(1Y1
×T×1Y2

) : (Y1×Y2)×(Y1×Y2) → (Y1×Y1)×(Y2×Y2) → Y1×Y2,

where T : Y2 × Y1 → Y1 × Y2 is the switching map.
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Remark 4.9. Let m : Y1 × Y2 → Y be a pairing. Then for any α1 ∈ [X,Y1] and
α2 ∈ [X,Y2], the ‘addition’ +

·
is defined by

α1 +
·
α2 = m ◦ (α1∆α2) = m ◦ (α1 × α2) ◦∆.

If p⊤(α1∆α2), then we see p⊤(α1 +
·
α2).

Remark 4.10. Let Top∗ be the category of small topological spaces with base
point and Set the category of small sets. We note that

p⊤(X, •) : Top∗ → Set

is a functor. If p : X → A is strongly essential, then p⊤(X, •) preserves products
for grouplike spaces by Theorem 4.7(3).

5. Long sequences of coGottlieb sets

Proposition 5.1. Let H and L be any abelian groups and p : X → A a map.

A homomorphism h : H → L induces a function

h∗ : Gnp (X ;H) → Gnp (X ;L).

Proof. Let h : K(H, n) → K(L, n) be the continuous map which induces the
homomorphism of homotopy groups

πn(h) = h : H = πn(K(H, n)) → πn(K(L, n)) = L.

We have the following commutative diagram:

Gnp (X ;H) ⊂ [X,K(H, n)]
h♯
// [X,K(L, n)] ⊃ Gnp (X ;L)

Hn(X ;H)
h∗ // Hn(X ;L)

If α ∈ Gnp (X ;H) ⊂ [X,K(H, n)] = Hn(X ;H), then p⊤α and hence p⊤(h ◦ α).

It follows that h∗(α) = h ◦ α ∈ Gnp (X ;L). �

We have the following long graded sequence of coGottlieb sets.

Theorem 5.2. Let 0 → H
h

−−→ G
g

−−→ L → 0 be a short exact sequence of

abelian groups. Then, there exists the following long graded sequence of sets :

G1
p(X ;H)

h∗−−−→ G1
p(X ;G)

g∗
−−−→ · · ·

g∗
−−−→ Gn−1

p (X ;L)
∂∗−−−→

Gnp (X ;H)
h∗−−−→ Gnp (X ;G)

g∗
−−−→ Gnp (X ;L)

∂∗−−−→ Gn+1
p (X ;H)

h∗−−−→ · · ·

Proof. Since 0 → H
h

−−→ G
g

−−→ L → 0 is a short exact sequence of abelian
groups, we have the following fibration sequence (see p. 167 [4]):

K(H, 1)
h

−−→ K(G, 1)
g

−−→ K(L, 1)
∂

−−→ K(H, 2)
h

−−→ K(G, 2) → · · ·

g
−→ K(L, n− 1)

∂
−−→ K(H, n)

h
−−→ K(G, n)

g
−−→ K(L, n)

∂
−−→ K(H, n+1)

h
−→ · · ·
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where ∂ : ΩK(L, n) = K(L, n−1) → K(H, n) is the induced map (see Theorem
6.4.14 and Theorem 6.5.7 of [9]). By Theorem 6.4.14, Theorem 6.5.7 and
Corollary 6.5.8 of [9], we have an exact sequence

→ [X,ΩK(L, n)]
∂∗−→ [X,K(H, n)]

h∗−→ [X,K(G, n)]
g
∗−→ [X,K(L, n)]

∂∗−→ · · ·

which is the long exact sequence

· · · → Hn−1(X ;L)
∂∗−−−→ Hn(X ;H)

h∗−−−→ Hn(X ;G)
g∗

−−−→ Hn(X ;L)
∂∗−−−→ · · · .

If α ∈ Gn−1
p (X ;L), then p⊤α and consequently p⊤(∂◦α). This implies ∂∗(α) =

(∂ ◦ α)∈ Gnp (X ;H). Hence we have the a graded sequence

· · · → Gn−1
p (X ;L)

∂∗−−−→ Gnp (X ;H)
h∗−−−→ Gnp (X ;G)

g∗
−−−→ Gnp (X ;L)

∂∗−−−→ · · · .

�

For any map f : Y → X , we have the following commutative diagram:

· · ·
∂1∗ // Hm(X ;H)

h1∗ //

f∗

H

��

Hm(X ;G)
g1∗ //

f∗

G

��

Hm(X ;L)
∂1∗ //

f∗

L

��

· · ·

· · ·
∂2∗ // Hm(Y ;H)

h2∗ // Hm(Y ;G)
g2∗ // Hm(Y ;L)

∂2∗ // · · ·

Consider the following diagram:

Y

q

��

f
// X

p

��

B A

Let m ≥ 1 be an integer. We define the following subset of the homotopy set
[Y,X ]:

DCPmq,p(Y,X ;F) = {f ∈ [Y,X ] | Gnq (Y ;F) ⊃ f∗(Gnp (X ;F)) for all n ≤ m}.

A map f : Y → X is called an F-(q, p)-cocyclic element preserving map up to

m or an F-DCPmq,p-map if f ∈ DCPmq,p(Y,X ;F) (see [7]).
By Theorem 5.2, we have the following diagram:

· · ·
∂1∗ // Gmp (X ;H)

h1∗ //

f∗

H

��

Gmp (X ;G)
g1∗ //

f∗

G

��

Gmp (X ;L)
∂1∗ //

f∗

L

��

· · ·

· · ·
∂2∗ // Gmq (Y ;H)

h2∗ // Gmq (Y ;G)
g2∗ // Gmq (Y ;L)

∂2∗ // · · ·

If f ∈ DCPmq,p(Y,X ;H)∩DCPmq,p(Y,X ;G)∩DCPmq,p(Y,X ;L), then the above
diagram is commutative. In general, the homomorphism f∗

F
: Gmp (X ;F) →

Gmq (Y ;F) is not well defined for F = H, G and L.
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The relation of DCPmq,p(Y,X ;H), DCPmq,p(Y,X ;G) and DCPmq,p(Y,X ;L) is
not clear, but if 0 → H → G → L → 0 is a split short exact sequence of abelian
groups, then, the following inclusions of sets exist in [Y,X ] by Theorem 5.3
below:

DCPmq,p(Y,X ;G)

⋂

⋂ DCPmq,p(Y,X ;L)

⋂

DCPmq,p(Y,X ;H) ⋂ DCPmq,p(Y,X ;L) ∪DCPmq,p(Y,X ;H)

Theorem 5.3. Let 0 → H
h

−−→ G
g

−−→ L → 0 be a split short exact sequence

of abelian groups. Then the following relation holds :

DCPmq,p(Y,X ;G) ⊂ DCPmq,p(Y,X ;H) ∩DCPmq,p(Y,X ;L).

Proof. We have homomorphisms r : L → G and ℓ : G → H such that g◦r = 1L,
ℓ ◦ h = 1H and h ◦ ℓ+ r ◦ g = 1G.

0 // H
h //

G
ℓ

oo
g

//
L

r
oo // 0

We then have the following commutative diagram:

0 // Hn(X ;H)
h1∗ //

f∗

H

��

Hn(X ;G)
ℓ1∗

oo
g1∗ //

f∗

G

��

Hn(X ;L)
r1∗

oo //

f∗

L

��

0

0 // Hn(Y ;H)
h2∗ // Hn(Y ;G)
ℓ2∗

oo
g2∗ // Hn(Y ;L)
r2∗

oo // 0

for any map f : Y → X and any n ≤ m, where the rows are short exact
sequences.

By the above commutative diagram, we know that

f∗

H
= ℓ2∗ ◦ f

∗

G
◦ h1∗ and f∗

L
= g2∗ ◦ f

∗

G
◦ r1∗.

By Proposition 5.1, the homomorphisms hk∗, gk∗, rk∗ and ℓk∗ are induced by
maps for k = 1, 2. If f ∈ DCPmq,p(Y,X ;G) then f∗

G
: Gnp (X ;G) → Gnq (Y ;G)

is well defined for any n ≤ m. Hence, we have f ∈ DCPmq,p(Y,X ;H) ∩
DCPmq,p(Y,X ;L). �

Theorem 5.4. Let 0 → H
h

−−→ G
g

−−→ L → 0 be a split short exact sequence

of abelian groups. Suppose that q is an (n,G)-essential map for any n ≤ m.

Then the following equality holds :

DCPmq,p(Y,X ;G) = DCPmq,p(Y,X ;H) ∩DCPmq,p(Y,X ;L).
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Proof. We have the following diagram where two rows are split exact sequences
by Proposition 4.3:

0 // Gnp (X ;H)
h1∗ //

f∗

H

��

Gnp (X ;G)
ℓ1∗

oo
g1∗

//

f∗

G

��

Gnp (X ;L)
r1∗

oo //

f∗

L

��

0

0 // Gnq (Y ;H)
h2∗ // Gnq (Y ;G)
ℓ∗2

oo
g2∗ // Gnq (Y ;L)
r2∗

oo // 0

for any map f : Y → X . By Proposition 5.1, the homomorphisms hk∗, gk∗, rk∗
and ℓk∗ are well defined for k = 1, 2. By the commutativity of the diagram in
the proof of Theorem 5.3, we know that

f∗

H
= ℓ2∗ ◦ f

∗

G
◦ h1∗ and f∗

L
= g2∗ ◦ f

∗

G
◦ r1∗;

f∗

G
= h2∗ ◦ f

∗

H
◦ ℓ1∗ + r2∗ ◦ f

∗

L
◦ g1∗.

Since q is an (n,G)-essential map for any n ≤ m, the set Gnq (Y ;G) is a group
and hence we see that f ∈ DCPmq,p(Y,X ;G) if and only if f ∈ DCPmq,p(Y,X ;H)∩
DCPmq,p(Y,X ;L). �

Lemma 5.5. DCPmq,p(Y,X ;⊕sL) ⊂ DCPmq,p(Y,X ;L) for any s ≥ 2.

Proof. Let 0 → L → L⊕L → L → 0 be the short exact sequence for the direct
sum L⊕ L. By Theorem 5.3, we have

DCPmq,p(Y,X ;L⊕ L) ⊂ DCPmq,p(Y,X ;L).

Furthermore, let 0 → ⊕jL → ⊕j+kL → ⊕kL → 0 be the short exact sequence
for the direct sum ⊕j+kL for j, k ≥ 1. Then by induction we have

DCPmq,p(Y,X ;⊕j+kL) ⊂ DCPmq,p(Y,X ;L).
�

Proposition 5.6. Let G be a finitely generated abelian group. Assume that

G = F ⊕ T where F 6= 0 is the free part and T 6= 0 is the torsion part. Let

F = ⊕sZ and T = ⊕tZpat
t

where pt is a prime number and at is a positive

integer for any t. Let MT of T be a subgroup of T defined by MT = ⊕iZ
q
bi
i

such that qbii 6= q
bj
j for i 6= j (that is, MT is defined making use of all the

different direct summands in T ). Then the following inclusion holds :

DCPmq,p(Y,X ;G) ⊂ DCPmq,p(Y,X ;Z⊕MT ).

Proof. By Lemma 5.5, we have the result. �

Corollary 5.7. Assume the same conditions as in Proposition 5.6. Suppose

that q is an essential map. Then DCPmq,p(Y,X ;G) = DCPmq,p(Y,X ;Z⊕MT ).
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Proposition 5.8. If the homomorphism g : G → L has a right inverse homo-

morphism r : L → G, then

DCPmq,p(Y,X ;G) ⊂ DCPmq,p(Y,X ;L).

If g : G → L is an isomorphism, then DCPmq,p(Y,X ;G) = DCPmq,p(Y,X ;L).

Proof. Let f ∈ DCPmq,p(Y,X ;G) and let α ∈ Gnp (X ;G). From the induced
maps

K(L, n)
r // K(G, n)

g
// K(L, n),

we have the following commutative diagram:

Hn(X ;G)
g
1∗ //

f∗

G

��

Hn(X ;L)
r1∗

oo

f∗

L

��

Hn(Y ;G)
g
2∗ // Hn(Y ;L)
r2∗

oo

It follows that g2∗ ◦ f
∗

G
= f∗

L
◦ g1∗. Hence composing the induced right inverse

homotopy map r∗, we have

f∗

L = f∗

L ◦ g1∗ ◦ r1∗ = g2∗ ◦ f
∗

G ◦ r1∗.

If α ∈ Gnp (X : L), then we have f∗

L
(α) = (g2∗ ◦ f

∗

G
◦ r1∗)(α) ∈ Gnq (Y : L) by the

definition of f . This completes the proof. �
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