DOI QR코드

DOI QR Code

Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process

  • 김한상 (충북대학교 전자정보대학) ;
  • 김성진 (충북대학교 전자정보대학)
  • Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2017.06.13
  • 심사 : 2017.07.28
  • 발행 : 2017.09.01

초록

A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

키워드

참고문헌

  1. J. F. Wager and R. Hoffman, IEEE Spectrum, 48, 42 (2011). [DOI: https://doi.org/10.1109/MSPEC.2011.5753244]
  2. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: https://doi.org/10.1126/science.1083212]
  3. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: https://doi.org/10.1103/PhysRevLett.85.1012]
  4. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys., 45, 4303 (2006). [DOI: https://doi.org/10.1143/JJAP.45.4303]
  5. N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya, and H. Hosono, Phys. Status Solidi A, 205, 1915 (2008). [DOI: https://doi.org/10.1002/pssa.200778909]
  6. S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.074]
  7. S. J. Seo, Y. H. Hwang, and B. S. Bae, Electrochem. Solid-State Lett., 13, H357 (2010). [DOI: https://doi.org/10.1149/1.3474606]
  8. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 3017 (2010). [DOI: https://doi.org/10.1016/j.tsf.2009.10.132]
  9. J. S. Kim, B. S. Oh, M. Piao, M. K. Joo, H. K. Jang, S. E. Ahn, and G. T. Kim, J. Appl. Phys., 116, 245302 (2015). [DOI: https://doi.org/10.1063/1.4904843]
  10. S. Lee, H. Kim, D. J. Yun, S. W. Rhee, and K. Yong, Appl. Phys. Lett., 95, 262113 (2010). [DOI: https://doi.org/10.1063/1.3280864]
  11. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, IEEE Trans. Electron Dev., 56, 696 (2009). [DOI: https://doi.org/10.1109/TED.2009.2012522]
  12. J. W. Seo, J. W. Park, K. S. Lim, S. J. Kang, Y. H. Hong, J. H. Yang, L. Fang, G. Y. Sung, and H. K. Kim, Appl. Phys. Lett., 95, 133508 (2009). [DOI: https://doi.org/10.1063/1.3242381]
  13. R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett., 82, 733 (2003). [DOI: https://doi.org/10.1063/1.1542677]
  14. V. Subramanian, J.M.J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, and S. K. Volkman, Proc. IEEE, 93, 1330 (2005). [DOI: https://doi.org/10.1109/JPROC.2005.850305]
  15. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 17, 590 (2005). [DOI: https://doi.org/10.1002/adma.200400368]
  16. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). [DOI: https://doi.org/10.1063/1.1843286]
  17. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: https://doi.org/10.1002/adma.201103228]
  18. E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A.M.B. do Rego, G. Goncalves, A. Vila, J. R. Morante, and R.F.P. Martins, Appl. Phys. Lett., 92, 222103 (2008). [DOI: https://doi.org/10.1063/1.2937473]
  19. Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Appl. Phys. Lett., 84, 4556 (2004). [DOI: https://doi.org/10.1063/1.1759071]
  20. G. H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B.J.E. van Rens, and D. M. de Leeuw, Nat. Mater., 3, 106 (2004). [DOI: https://doi.org/10.1038/nmat1061]
  21. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature, 445, 745 (2007). [DOI: https://doi.org/10.1038/nature05533]
  22. M. G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, Nat. Mater., 10, 382 (2011). [DOI: https://doi.org/10.1038/nmat3011]
  23. J. A. Greenwood and J.B.P. Williamson, Proc. R. Soc. London, Ser. A, 295, 300 (1966). [DOI: https://doi.org/10.1098/rspa.1966.0242]
  24. J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008). [DOI: https://doi.org/10.1149/1.2903209]