DOI QR코드

DOI QR Code

Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells

  • Lee, Hye-Yeon (Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Juri (Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Ryu, Jae-Sook (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Park, Soon-Jung (Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
  • Received : 2017.05.30
  • Accepted : 2017.06.19
  • Published : 2017.08.31

Abstract

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis ${\alpha}$-actinin 2, $Tv{\alpha}$-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of $Tv{\alpha}$-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-$Tv{\alpha}$-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or $Tv{\alpha}$-actinin 2 protein. Both T. vaginalis and $rTv{\alpha}$-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, $CD4^+CD25^-$ regulatory T cells (Treg cells) incubated with $rTv{\alpha}$-actinin 2-treated DCs produced high levels of IL-10. These data indicate that $Tv{\alpha}$-actinin 2 modulates immune responses via IL-10 production by Treg cells.

Keywords

References

  1. Fouts AC, Kraus SJ. Trichomonas vaginalis: reevaluation of its clinical presentation and laboratory diagnosis. J Infect Dis 1993; 141: 137-143.
  2. Fiori PL, Rappelli P, Addis MF. The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes Infect 1999; 1: 149-156. https://doi.org/10.1016/S1286-4579(99)80006-9
  3. Figueroa-Angulo EE, Rendon-Gandarilla FJ, Puente-Rivera J, Calla-Chaoque JS, Cardenas-Guerra RE, Ortega-Lopez J, Quintas-Granados LI, Alvarez-Sanchez ME, Arroyo R. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 2012; 14: 1411-1427. https://doi.org/10.1016/j.micinf.2012.09.004
  4. Lee HY, Hyung S, Lee JW, Kim J, Shin MH, Ryu JS, Park SJ. Identification of antigenic proteins in Trichomonas vaginalis. Korean J Parasitol 2011; 49: 79-83. https://doi.org/10.3347/kjp.2011.49.1.79
  5. Dixson, JD, Forstner MJ, Garcia DM. The $\alpha$-actinin gene family: a revised classification. J Mol Evol 2003; 56: 1-10. https://doi.org/10.1007/s00239-002-2374-5
  6. Addis MF, Rappelli P, Delogu G, Carta F, Cappuccinelli P, Fiori PL. Cloning and molecular characterization of a cDNA clone coding for Trichomonas vaginalis alpha-actinin and intracellular localization of the protein. Infect Immun 1998; 66: 4924-4931.
  7. Addis MF, Rappelli P, Pinto De Andrade AM, Rita FM, Colombo MM, Cappuccinelli P, Fiori PL. Identification of Trichomonas vaginalis alpha-actinin as the most common immunogen recognized by sera of women exposed to the parasite. J Infect Dis 1999; 180: 1727-1730. https://doi.org/10.1086/315095
  8. Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15: 939-945. https://doi.org/10.1158/1055-9965.EPI-05-0781
  9. Neace CJ, Alderete JF. Epitopes of the highly immunogenic Trichomonas vaginalis $\alpha$-actinin are serodiagnostic targets for both women and men. J Clin Microbiol 2013; 51: 2483-2490. https://doi.org/10.1128/JCM.00582-13
  10. Ryu JS, Kang JH, Jung SY, Shin MH, Kim JM, Park H, Min DY. Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Immun 2004; 72: 1326-1332. https://doi.org/10.1128/IAI.72.3.1326-1332.2004
  11. Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 1957; 43: 488-490.
  12. Kim SR, Kim JH, Park SJ, Lee HY, Kim YS, Kim YM, Hong YC, Ryu JS. Comparison between mixed lysate antigen and $\alpha$-actinin antigen in ELISA for serodiagnosis of trichomoniasis. Parasitol Int. 2015; 64:405-407. https://doi.org/10.1016/j.parint.2015.06.003
  13. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271-296. https://doi.org/10.1146/annurev.iy.09.040191.001415
  14. Burgoyne RD. Secretory vesicle-associated proteins and their role in exocytosis. Annu Rev Physiol 1990; 52: 647-659. https://doi.org/10.1146/annurev.ph.52.030190.003243
  15. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010; 10: 170-181 https://doi.org/10.1038/nri2711
  16. Akbari O, Dekruyff RH, Umestsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2: 725-731. https://doi.org/10.1038/90667
  17. Han IH, Goo SY, Park SJ, Hwang SJ, Kim YS, Yang MS, Ahn MH, Ryu JS. Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with Trichomonas vaginalis. Korean J Parasitol 2009; 47: 205-212. https://doi.org/10.3347/kjp.2009.47.3.205
  18. Sfanosn KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology 2012; 60: 199-215. https://doi.org/10.1111/j.1365-2559.2011.04033.x
  19. Han IH, Kim JH, Kim SS, Ahn MH, Ryu JS. Signalling pathways associated with IL-6 production and epithelial-mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis. Parasite Immunol 2016; 38: 678-687. https://doi.org/10.1111/pim.12357
  20. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 2006; 74: 5773-5779. https://doi.org/10.1128/IAI.00631-06
  21. Mundodi V, Kucknoor AS, Alderete JF. Immunogenic and plasminogen-binding surface-associated ${\alpha}$-enolase of Trichomonas vaginalis. Infect Immun 2008; 76: 523-531. https://doi.org/10.1128/IAI.01352-07
  22. Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ. Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-${\kappa}B$ activation. Mol Cells 2004; 18: 177-185.
  23. Ahn MH, Song HO, Ryu JS. Trichomonas vaginalis-induced neutrophil apoptosis cause anti-inflammatory cytokine production by human monocyte-derived marcophages. Parasite Immunol 2008; 30: 410-416. https://doi.org/10.1111/j.1365-3024.2008.01037.x
  24. Scott K, Manunta M, Germain C, Smith P, Jones M, Mitchell P, Dessi D, Branigan Bamford K, Lechler RI, Fiori PL, Foster GR, Lombardi G. Qualitatively distinct patterns of cytokines are released by human dendritic cells in response to different pathogens. Immunology 2005; 116: 245-254. https://doi.org/10.1111/j.1365-2567.2005.02218.x
  25. Song MJ, Lee JJ, Nam YH, Kim TG, Chung YW, Kim M, Choi YE, Shin MH, Kim HP. Modulation of dendritic cell function by Trichomonas vaginalis-derived secretory products. BMB Rep 2015; 48: 103-108. https://doi.org/10.5483/BMBRep.2015.48.2.116
  26. Twu O, Dessi D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A 2014; 111: 8179-8184. https://doi.org/10.1073/pnas.1321884111
  27. Murai M, Turovkaya O, Kim G, Madan R, Karp CL, Cheroutre H, Kronenberg M. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009; 10: 1178-1184. https://doi.org/10.1038/ni.1791
  28. Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+CD25- T cells to CD4+ Tregs. J Clin Invest 2006; 116: 2434-2341.

Cited by

  1. Vasoactive intestinal peptide is required in the maintenance of immune regulatory competency of immune regulatory monocytes vol.196, pp.2, 2019, https://doi.org/10.1111/cei.13259
  2. Surface‐enhanced Raman scattering of secretory proteins for the cytotoxicity analysis of low‐dose doxorubicin vol.51, pp.11, 2017, https://doi.org/10.1002/jrs.5990