DOI QR코드

DOI QR Code

Wireless Caching Techniques Based on Content Popularity for Network Resource Efficiency and Quality of Experience Improvement

네트워크 자원효율 및 QoE 향상을 위한 콘텐츠 인기도 기반 무선 캐싱 기술

  • Kim, Geun-Uk (Department of Information Communication Engineering, Pukyong National University) ;
  • Hong, Jun-Pyo (Department of Information Communication Engineering, Pukyong National University)
  • Received : 2017.04.10
  • Accepted : 2017.08.09
  • Published : 2017.08.31

Abstract

According to recent report, global mobile data traffic is expected to increase by 11 times from 2016 to 2020. Moreover, this growth is expected to be driven mainly by mobile video traffic which is expected to account for about 70% of the total mobile data traffic. To cope with enormous mobile traffic, we need to understand video traffic's characteristic. Recently, the repetitive requests of some popular content such as popular YouTube videos cause a enormous network traffic overheads. If we constitute a network with the nodes capable of content caching based on the content popularity, we can reduce the network overheads by using the cached content for every request. Through device-to-device, multicast, and helpers, the video throughput can improve about 1.5~2 times and prefix caching reduces the playback delay by about 0.2~0.5 times than the conventional method. In this paper, we introduce some recent work on content popularity-based caching techniques in wireless networks.

최근 발표에 따르면, 2020년까지 모바일 데이터 트래픽이 현재의 11배까지 증가 될 것으로 예상된다. 그 중 비디오 트래픽이 70%를 차지할 것으로 예상되는 만큼 방대해지는 모바일 비디오 트래픽의 문제를 해결하기 위해서는 비디오 트래픽의 특성을 이해할 필요가 있다. 최근, 인기 있는 유튜브 비디오와 같은 일부 인기 있는 콘텐츠의 반복적인 요청으로 인해 네트워크 트래픽 오버헤드가 많이 발생한다. 만약 콘텐츠 인기도를 알고 인기 있는 콘텐츠를 미리 캐싱 할 수 있는 네트워크 노드를 구성한다면 이용자의 요청에 대해 캐싱 된 콘텐츠를 이용함으로써 네트워크 오버헤드를 줄일 수 있다. 장치 대 장치 통신, 멀티캐스트, 헬퍼를 통해 비디오 처리량이 기존의 방법보다 약 1.5배에서 2배의 이득이 향상되었다. 또한, 프리픽스 캐싱을 통해 기존의 방법보다 약 0.2배에서 0.5배의 재생 지연이 감소되었다. 본 논문에서는 무선 네트워크 환경에서 콘텐츠 인기도를 기반한 캐싱 기술에 대한 최신 연구를 소개 한다.

Keywords

References

  1. N. Golrezaei, A. F. Molisch, A. G. Dimakis, G. Caire, "Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution," IEEE Communications Magazine, vol. 51, no. 4, pp. 142-149, Apr. 2013. https://doi.org/10.1109/MCOM.2013.6495773
  2. X. Cheng, J. Liu, and C. Dale, "Understanding the characteristics of internet short video sharing: A YouTubebased measurement study," IEEE Transactions on Multimedia, vol. 15, no. 5, pp. 1184-1194, Aug. 2013. https://doi.org/10.1109/TMM.2013.2265531
  3. B. Li, M. J. Golin, G. F. Italiano, X. Deng, K. Sohraby, "On the optimal placement of Web proxies in the Internet," in Proc. 8th IEEE International Conference on Computer and Communications, pp. 1282-1290, Mar. 1999.
  4. K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch and G. Caire, "Femtocaching: Wireless content delivery through distributed caching helpers," IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402-8413, Dec. 2013. https://doi.org/10.1109/TIT.2013.2281606
  5. S. H. Chae and W. Choi, "Caching placement in stochastic wireless caching helper networks: Channel selection diversity via caching," IEEE Transactions on Wireless Communications, vol. 15, no. 10, pp. 6626-6637, Oct 2016. https://doi.org/10.1109/TWC.2016.2586841
  6. A. Shokrollahi, "Raptor codes," IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551-2567, Jun. 2006. https://doi.org/10.1109/TIT.2006.874390
  7. N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, "Basestation assisted device-to-device communications for high-throughput wireless video networks," IEEE Transactions on Wireless Communications, vol. 13, no.7, pp.3665-3676, Jul. 2014. https://doi.org/10.1109/TWC.2014.2316817
  8. M. Ji, G. Caire, and A. F. Molisch, "Wireless deviceto- device caching networks: Basic principles and system performance," IEEE Journal of Selected Areas in Communications, vol. PP, no. 99, pp. 1, 2015.
  9. J. Erman and K. K. Ramakrishnan, "Understanding the super-sized traffic of the super bowl," in Proc. ACM Internet Measurement Conference, Nov. 2013, pp. 353-360.
  10. X. Xie, B. Rong, T. Zhang, W. Lei, "Improving physical layer multicast by cooperative communications in heterogeneous networks," IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 58-63, Jun. 2011.
  11. K. Poularakis, G. Iosifidis, V. Sourlas and L. Tassiulas "Exploiting caching and multicast for 5G wireless networks," IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2995-3007, Apr. 2016. https://doi.org/10.1109/TWC.2016.2514418
  12. M. A. Maddah-Ali, U. Niesen, "Fundamental limits of caching," IEEE Transactions on. Information Theory, vol. 60, no. 5, pp. 2856-2867, May 2014. https://doi.org/10.1109/TIT.2014.2306938
  13. V. Tokekar, A. K. Ramani, and S. Tokekar, "Analysis of caching policy in view of user reneging in VoD system," in Proc. IEEE India conference, Dec. 2005, pp. 399-403.
  14. J.-P. Hong and W. Choi, "User prefix caching for average playback delay reduction in wireless video streaming," IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 377-388, Aug. 2016. https://doi.org/10.1109/TWC.2015.2473171