DOI QR코드

DOI QR Code

Parallelizing 3D Frequency-domain Acoustic Wave Propagation Modeling using a Xeon Phi Coprocessor

제온 파이 보조 프로세서를 이용한 3차원 주파수 영역 음향파 파동 전파 모델링 병렬화

  • Ryu, Donghyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Jo, Sang Hoon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Ha, Wansoo (Department of Energy Resources Engineering, Pukyong National University)
  • 류동현 (부경대학교 에너지자원공학과) ;
  • 조상훈 (부경대학교 에너지자원공학과) ;
  • 하완수 (부경대학교 에너지자원공학과)
  • Received : 2017.04.10
  • Accepted : 2017.07.19
  • Published : 2017.08.31

Abstract

3D seismic data processing methods such as full waveform inversion or reverse-time migration require 3D wave propagation modeling and heavy calculations. We compared efficiency and accuracy of a Xeon Phi coprocessor to those of a high-end server CPU using 3D frequency-domain wave propagation modeling. We adopted the OpenMP parallel programming to the time-domain finite difference algorithm by considering the characteristics of the Xeon Phi coprocessors. We applied the Fourier transform using a running-integration to obtain the frequency-domain wavefield. A numerical test on frequency-domain wavefield modeling was performed using the 3D SEG/EAGE salt velocity model. Consequently, we could obtain an accurate frequency-domain wavefield and attain a 1.44x speedup using the Xeon Phi coprocessor compared to the CPU.

파형 역산 또는 역시간 구조 보정과 같은 3차원 탄성파 자료 처리를 위해서는 3차원 파동 전파 모델링과 그에 따른 대량의 수치 계산이 필요하다. 본 연구에서는 3차원 주파수 영역 파동 전파 모델링을 이용해 제온 파이 가속기와 서버용 고성능 CPU의 성능 및 정확성을 비교하였다. 시간 영역 유한 차분법 알고리즘에 제온 파이의 특징을 고려하여 OpenMP 병렬 프로그래밍을 적용하였다. 주파수 영역 파동장을 얻기 위해서는 시간 영역 모델링과 동시에 푸리에 변환을 수행하였다. 3차원 SEG/EAGE 암염돔 속도 모델을 사용하여 주파수 영역 파동장을 생성한 결과, 제온 파이를 이용해 정확한 주파수 영역 파동장을 CPU 대비 1.44배 빠르게 얻을 수 있었다.

Keywords

References

  1. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAEG 3-D modeling project: 2nd update, The Leading Edge, 13, 949-952. https://doi.org/10.1190/1.1437054
  2. Andreolli, C., Thierry, P., Borges, L., Yount, C., and Skinner, G., 2014, Genetic algorithm based auto-tuning of seismic application on multi and manycore computers, EAGE Workshop on High Performance Computing for Upstream, HPC16.
  3. Arslan, V., Blanc, J. Y., Tchiboukdjian, M., Thierry, P., and Thomas-Collignon, G., 2014, Design and performance of an Intel Xeon Phi based cluster for reverse time migration, EAGE Workshop on High Performance Computing for Upstream, HPC06.
  4. Caballero, D., Farres, A., Duran, A., Hanzich, M., Fernandez, S., and Martorell, X., 2015, Optimizing fully anistropic elastic propagation on Intel Xeon Phi coprocessors, 2nd EAGE Workshop on High Performance Computing for Upstream, HPC14.
  5. Costa, D. L., Borges, L., Leite, L. S., Barbosa, C. H. S., and Silva, J. J., 2015, Half-precision performance benefits on a Xeon Phi TTI RTM application, 77th EAGE Conference & Exhibition, Th N112 10.
  6. Furse, C. M., 2000, Faster than Fourier: ultra-efficient time-tofrequency-domain conversions for FDTD simulations, IEEE Antennas Propag. Mag., 42, 24-34. https://doi.org/10.1109/74.894179
  7. Hanzich, M., Aguilar, G., Rubio, F., Cela, J. M., and Ortigosa, F., 2013, Evaluating Xeon Phi coprocessor through acoustic RTM, 75th EAGE Conference & Exhibition incorporating SPE EUROPEC, Tu P10 12.
  8. Jeffers, J., and Reinders, J., 2013, Intel Xeon Phi coprocessor high-performance programming, Morgan Kaufmann.
  9. Keys, R. G., 1985, Absorbing boundary conditions for acoustic media, Geophysics, 50, 892-902. https://doi.org/10.1190/1.1441969
  10. Kim, Y., Cho, Y., Jang, U., and Shin, C., 2013, Acceleration of stable TTI P-wave reverse-time migration with GPUs, Comput. Geosci., 52, 204-217. https://doi.org/10.1016/j.cageo.2012.10.013
  11. Liu, G., Liu, Y., Ren, L., and Meng, X., 2013, 3D seismic reverse time migration on GPGPU, Comput. Geosci., 59, 17-23. https://doi.org/10.1016/j.cageo.2013.05.009
  12. Nihei, K. T., and Li, X., 2007, Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD-PSD), Geophys. J. Int., 169, 1069-1078. https://doi.org/10.1111/j.1365-246X.2006.03262.x
  13. Pacheco, S., 2011, An introduction to parallel programming, Morgan Kaufmann.
  14. Rastogi, R., Srivastava, A., Sirasala, K., Chavhan, H., and Khonde, K., 2015, Experience of porting and optimization of seismic modeling on multi and many cores of hybrid computing cluster, 77th EAGE Conference & Exhibition, We P4 14.
  15. Reinders, J., and Jeffers, J., 2015, High performance parallelism Pearls, Morgan Kaufmann.
  16. Shi, X., Li, C., Wang, S., and Wang, X., 2010, Computing prestack Kirchhoff time migration on general purpose GPU, Comput. Geosci., 37, 1702-1710.
  17. Souza, P., Teixeira, T., Borges, L., Neto, A., Andreolli, C., and Thierry, P., 2014, Reverse time migration with heterogeneous multicore and manycore clusters, EAGE Workshop on High Performance Computing for Upstream, HPC17.
  18. Suh, S., and Wang, B., 2011, Expanding domain methods in GPU based TTI reverse time migration, SEG Expanded Abstract Technical Program, 3460-3464.
  19. Teixeira, T., Souza, P., Borges, L., Neto, A., Philippe, T., and Andreolli, C., 2014, Reverse time migration with manycore coprocessors, 76th EAGE Conference & Exhibition, We G10204.
  20. Yang, P., Gao, J., and Wang, B., 2014, RTM using effective boundary saving: A staggered grid GPU implementation, Comput. Geosci., 68, 64-72. https://doi.org/10.1016/j.cageo.2014.04.004
  21. Zhebel, E., Minisini, S., Kononov, A., and Mulder, W., 2013, Performance and scalability of finite-difference and finiteelement wave-propagation modeling on Intel's Xeon Phi, SEG Expanded Abstract Technical Proram, 3386-3390.