DOI QR코드

DOI QR Code

Metabolic Engineering Strategies of Clostridia for Butyric Acid Production

부티르산 생산을 위한 클로스트리듐 대사공학 전략

  • Noh, Hyeon Ji (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus), Gyeongsang National University) ;
  • Jang, Yu-Sin (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus), Gyeongsang National University)
  • 노현지 (경상대학교 농업생명과학연구원) ;
  • 장유신 (경상대학교 농업생명과학연구원)
  • Received : 2017.08.14
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Butyric acid (C4 carboxylic acid) is used as an important compound in food, pharmaceutical, and chemical industries. Currently, butyric acid is mainly produced at the industrial scale through the petrochemical processes. Bio-based butyric acid has also gained attention, because the consumer prefers the food and pharmaceutical ingredients that are produced through fermentation. Clostridia is one of the well-known butyric acid producers, and massively engineered for enhanced production of butyric acid. In this paper, we reviewed the metabolic pathway of clostridia, especially Clostridium acetobutylicum and Clostridium tyrobutyricum, and summarized the metabolic engineering strategies of the strains for enhanced production of butyric acid.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Blank-Porat, D., T. Gruss-Fischer, N. Tarasenko, Z. Malik, A. Nudelman, and A. Rephaeli (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett. 256: 39-48. https://doi.org/10.1016/j.canlet.2007.05.011
  2. Zhang, C., H. Yang, F. Yang, and Y. Ma (2009) Current progress on butyric acid production by fermentation. Curr. Microbiol. 59: 656-663. https://doi.org/10.1007/s00284-009-9491-y
  3. Rephaeli, A., R. Zhuk, and A. Nudelman (2000) Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications. Drug Develop. Res. 50: 379-391. https://doi.org/10.1002/1098-2299(200007/08)50:3/4<379::AID-DDR20>3.0.CO;2-8
  4. Horton, C. E. and G. N. Bennett (2006) Ester production in E. coli and C. acetobutylicum. Enzyme. Microb. Technol. 38: 937-943. https://doi.org/10.1016/j.enzmictec.2005.08.025
  5. Park, Y. C., C. E. H. Shaffer, and G. N. Bennett (2009) Microbial formation of esters. Appl. Microbiol. Biotechnol. 85: 13. https://doi.org/10.1007/s00253-009-2170-x
  6. Rodriguez, G. M., Y. Tashiro, and S. Atsumi (2014) Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 10: 259-265. https://doi.org/10.1038/nchembio.1476
  7. Liu, X., Y. Zhu, and S. T. Yang (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol. Prog. 22: 1265-1275.
  8. Jang, Y.-S., J. A. Im, S. Y. Choi, J. I. Lee, and S. Y. Lee (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab. Eng. 23: 165-174. https://doi.org/10.1016/j.ymben.2014.03.004
  9. Fu, H., L. Yu, M. Lin, J. Wang, Z. Xiu, and S. T. Yang (2017) Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab. Eng. 40: 50-58. https://doi.org/10.1016/j.ymben.2016.12.014
  10. Jang, Y. S., H. M. Woo, J. A. Im, I. H. Kim, and S. Y. Lee (2013) Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl. Microbiol. Biotechnol. 97: 9355-9363. https://doi.org/10.1007/s00253-013-5161-x
  11. Jang, Y. S., J. Y. Lee, J. Lee, J. H. Park, J. A. Im, M. H. Eom, J. Lee, S. H. Lee, H. Song, J. H. Cho, Y. Seung do, and S. Y. Lee (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3: e00314-12.
  12. Woo, J. E., M. Kim, H. J. Noh, N. Hwang, J.-H. Kim, S. Y. Lee, and Y.-S. Jang (2016) Metabolic engineering of the genus Clostridium for butanol production. Kor. J. Microbiol. 52: 391-397. https://doi.org/10.7845/kjm.2016.6057
  13. Hartmanis, M. G. (1987) Butyrate kinase from Clostridium acetobutylicum. J. Biol. Chem. 262: 617-621.
  14. Huang, K. X., S. Huang, F. B. Rudolph, and G. N. Bennett (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J. Mol. Microbiol. Biotechnol. 2: 33-38.
  15. Lee, J. Y., Y. S. Jang, J. Lee, E. T. Papoutsakis, and S. Y. Lee (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol. J. 4: 1432-1440. https://doi.org/10.1002/biot.200900142
  16. Nair, R. V. and E. T. Papoutsakis (1994) Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J. Bacteriol. 176: 5843-5846. https://doi.org/10.1128/jb.176.18.5843-5846.1994
  17. Sillers, R., A. Chow, B. Tracy, and E. T. Papoutsakis (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10: 321-332. https://doi.org/10.1016/j.ymben.2008.07.005
  18. Choi, S. J., J. Lee, Y. S. Jang, J. H. Park, S. Y. Lee, and I. H. Kim (2012) Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum. J. Microbiol. 50: 1063-1066. https://doi.org/10.1007/s12275-012-2373-1
  19. Lee, J., Y.-S. Jang, M.-J. Han, J. Y. Kim, and S. Y. Lee (2016) Deciphering Clostridium tyrobutyricum metabolism based on the wholegenome sequence and proteome analyses. mBio 7: e00743-16.
  20. Zhu, Y., X. Liu, and S. T. Yang (2005) Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol. Bioeng. 90: 154-166. https://doi.org/10.1002/bit.20354
  21. Liu, X., Y. Zhu, and S.-T. Yang (2006) Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb. Tech. 38: 521-528. https://doi.org/10.1016/j.enzmictec.2005.07.008
  22. Zhang, Y., M. Yu, and S. T. Yang (2012) Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnol. Prog. 28: 52-59. https://doi.org/10.1002/btpr.730
  23. Kim, M.-S., M.-H. Woo, Y.-H. Chang, N. Chung, and J.-S. Kim (2016) Biochemical characterization of a noble xylanase from Paenibacillus sp. EC116. Appl. Biol. Chem. 59: 313-320.
  24. Lee, C.-K., M.-Y. Jang, H. R. Park, G.-C. Choo, H. S. Cho, S.-B. Park, K.-C. Oh, J.-B. An, and B.-G. Kim (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. Appl. Biol. Chem. 59: 415-423. https://doi.org/10.1007/s13765-016-0179-2
  25. Fu, H., S. T. Yang, M. Wang, J. Wang, and I. C. Tang (2017) Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresour. Technol. 234: 389-396. https://doi.org/10.1016/j.biortech.2017.03.073
  26. Woo, J. E., M. Kim, J. W. Lee, H. J. Seo, S. Y. Lee, and Y. S. Jang (2016) Development of genome engineering tools for metabolic engineering of butanol-producing Clostridium species. KSBB J. 31: 193-199. https://doi.org/10.7841/ksbbj.2016.31.4.193