DOI QR코드

DOI QR Code

Research Trend and Product Development Potential of Fungal Mycelium-based Composite Materials

곰팡이 균사체 기반 복합소재의 연구 동향과 제품 개발 가능성

  • Kim, Da-Song (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Kim, Yong-Woon (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Kim, Kil-Ja (Crop Research Division, Jeollanamdo Agricultural Research and Extension Services) ;
  • Shin, Hyun-Jae (Department of Chemical Engineering, Graduate School of Chosun University)
  • 김다송 (조선대학교 대학원 화학공학과) ;
  • 김용운 (조선대학교 대학원 화학공학과) ;
  • 김길자 (전라남도 농업기술원 작물연구반) ;
  • 신현재 (조선대학교 대학원 화학공학과)
  • Received : 2017.09.08
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

Fungal mycelium-based composite materials (FMBC) are a new biomaterial to replace the existing composite materials. To compete with lightweight, high-performance composite materials represented by fiber-reinforced plastic (FRP), various physical and chemical properties and functionality must be secured. Especially, the composite materials made by using mycelium of mushroom is called mushroom plastic. Currently, Ecovative, Grado Zero Espace and MycoWorks in USA and Europe are launching new products. Products utilizing FMBC can be launched in the market for construction materials, automobile interior materials and artificial leather substitutes. In spite of this high possibility, mass production using FMBC has not yet been reported. This review introduces the FMBC, a material that can replace existing plastics, inorganic building materials and animal skins in an environmentally and economically viable way, and looks at the possibility of future biomaterials by summarizing recent research contents.

Keywords

Acknowledgement

Supported by : 한국연구재단, 한국여성과학기술인지원센터

References

  1. Geyer, R., J. R. Jambeck, and K. L. Law (2017) Production, use, and fate of all plastics ever made. Sci. Adv. 3: 1-5.
  2. Mekonnen, T., P. Mussone, H. Khalil, and D. Bressler (2013) Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 1: 13379-13398. https://doi.org/10.1039/c3ta12555f
  3. Vink, E. T., K. R. Rabago, D. A. Glassner, and P. R. Gruber (2003) Applications of life cycle assessment to $NatureWorks^{TM}$ polylactide (PLA) production. Polym. Degrad. Stab. 80: 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5
  4. Kim D. J., D. Y. Oh, M. K. Jeong, and S. Y. Nam (2016) Recent trends in composite materials for aircrafts. Appl. Chem. Eng. 27: 252-258. https://doi.org/10.14478/ace.2016.1043
  5. Haneef, M., L. Ceseracciu, C. Canale, I. S. Bayer, J. A. Heredia-Guerrero, and A. Athanassiou (2017) Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
  6. Jiang, L., D. Walczyk, and G. Mclntyre (2016) A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 139: 1-30.
  7. Jiang, L., D. Walczyk, G. Mclntyre, and W. K. Chan (2016) Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J. Manuf. Syst. 41: 8-20. https://doi.org/10.1016/j.jmsy.2016.07.004
  8. Jiang, L., D. Walczyk, G. Mclntyre, and R. Bucinell (2016) A new approach to manufacturing biocomposite sandwich structures: Mycelium-based cores. Proceedings of the ASME 2016 International Manufacturing Science and Engineering Conference. June 27-July 1. Virginia, USA.
  9. Bowman, S. M. and S. J. Free (2006) The structure and synthesis of the fungal cell wall. Bioessays 28: 799-808. https://doi.org/10.1002/bies.20441
  10. Latge, J. P. (2007) The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 66: 279-290. https://doi.org/10.1111/j.1365-2958.2007.05872.x
  11. Moore, D. (2002) Fungal morphogenesis. pp. 291-292. Cambridge University Press, Cambridge, UK.
  12. O'brien, R. W. and B. J. Ralph (1966) The cell wall composition and taxonomy of some basidiomycetes and ascomycetes. Ann. Bot. 30: 831-843. https://doi.org/10.1093/oxfordjournals.aob.a084117
  13. Mayoral Gonzalez, E. and I. Gonzalez Diez (2015) Bacterial induced cementation processes and mycelium panel growth from agricultural waste. Key Eng. Mater. 663: 42-49. https://doi.org/10.4028/www.scientific.net/KEM.663.42
  14. Holt, G. A., G. McIntyre, D. Flagg, E. Bayer, J. D. Wanjura, and M. G. Pelletier (2012) Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy, 6: 431-439. https://doi.org/10.1166/jbmb.2012.1241
  15. Yang, Z., F. Zhang, B. Still, M. White, and P. Amstislavski (2017) Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29: 1-9.
  16. Mushroom & jellyfish leather interior: Bentley eyes producing Vegan-friendly cars. (2017, may 13). Retrieved from https://on.rt.com/8bl5.
  17. Pedesen, M. T., J. R. Brewer, L. Duelund, and P. L. Hasen (2017) On the gastrophysics of jellyfish preparation. Int. J. Gastronomy Food Sci. 9: 34-38. https://doi.org/10.1016/j.ijgfs.2017.04.001
  18. Introducing PINATEXTM, http://www.ananas-anam.com/pinatex/ (2017).
  19. Kellie, G. (2016) Advances in Technical Nonwovens. pp. 97-114. Woodhead Publishing, Cambridge, UK.
  20. Jo, H. G., M. H. Choi, and H. J. Shin (2015) Preparation of fermentation broth of Sparassis latifolia containing soluble $\beta$-glucan using four Lactobacillus species. J. Mushrooms 13: 50-55. https://doi.org/10.14480/JM.2015.13.1.50
  21. Wiertz, P. (2014) Challenges and opportunities facing the global nonwovens industry. 53rd Man-made Fibers Congress. September 10-12. Dornbirn, Austria.
  22. Young, R. A. (2005) Kirk-Othmer Encyclopedia of Chemical Technology. 5th ed., pp. 285-301. Wiley, Hoboken, NJ, USA.
  23. Nagai, T. and N. Suzuki (2000) Isolation of collagen from fish waste material - Skin, bone and fins. Food Chem. 68: 277-281. https://doi.org/10.1016/S0308-8146(99)00188-0
  24. Kim, S. S. (2008) Recent developments in anode materials for Li secondary batteries. J. Korean Electrochem. Soc. 11: 211-222. https://doi.org/10.5229/JKES.2008.11.3.211
  25. Campbell, B., R. Ionescu, Z. Favors, C. S. Ozkan, and M. Ozkan (2015) Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries. Sci Rep 5: 1-9.
  26. Tang, J., V. Etacheri, and V. G. Pol (2016) Wild fungus derived carbon fibers and hybrids as anodes for lithium-ion batteries. ACS Sustainable Chem. Eng. 4: 2624-2631. https://doi.org/10.1021/acssuschemeng.6b00114

Cited by

  1. 감마선 처리에 의한 변이주의 배양 및 균막형성 특성 vol.18, pp.4, 2017, https://doi.org/10.14480/jm.2020.18.4.393
  2. Green electrospinning for biomaterials and biofabrication vol.13, pp.3, 2021, https://doi.org/10.1088/1758-5090/ac0964