DOI QR코드

DOI QR Code

Modified Capacitor-Assisted Z-Source Inverter Topology with Enhanced Boost Ability

  • Ho, Anh-Vu (School of Engineering, Eastern International University) ;
  • Chun, Tae-Won (Department of Electrical Engineering, University of Ulsan)
  • Received : 2017.04.13
  • Accepted : 2017.06.22
  • Published : 2017.09.20

Abstract

This paper presents a novel topology named a modified capacitor-assisted Z-source inverter (MCA-ZSI) based on the traditional ZSI. The impedance network of the proposed MCA-ZSI consists of two symmetrical cells coupled with two capacitors with an X-shape structure, and each cell has two inductors, two capacitors, and one diode. Compared with other topologies based on switched ZSI with the same number of components used at impedance network, the proposed topology provides higher boost ability, lower voltage stress across inverter switching devices, and lower capacitor voltage stress. The improved performances of the proposed topology are demonstrated in the simulation and experimental results.

Keywords

References

  1. F. Z. Peng, "Z-source inverter," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar. 2003. https://doi.org/10.1109/TIA.2003.808920
  2. Z. Rymarski and K. Bernacki, "Influence of Z-source output impedance on dynamic properties of single-phase voltage source inverters for uninterrupted power supply," IET Power Electron., Vol. 7, No. 8, pp. 1978-1988, 2014. https://doi.org/10.1049/iet-pel.2013.0722
  3. D. Vinnikov, A. Chub, E. Liivik, and I. Roasto, "High-performance quasi-Z-source series resonant DC-DC converter for photovoltaic module-level power electronics applications," IEEE Trans. Power Electron., Vol. 32, No. 5, pp. 3634-3650, May, 2017. https://doi.org/10.1109/TPEL.2016.2591726
  4. Y. Liu, B. Ge, H. Abu-Rub, and F. Z. Peng, "An effective control method for three-phase quasi-Z-source cascaded multilevel inverter based grid-tie photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6794-6802, Dec. 2014. https://doi.org/10.1109/TIE.2014.2316256
  5. C. L. Kala-Konga, M. N. Gitau, and R.C. Bansal, "Steady-state and small-signal models of a three-phase quasi-Z-source AC-DC converter for wind applications," IET Renew. Power Gener., Vol. 10, No. 7, pp. 1033-1040, 2016. https://doi.org/10.1049/iet-rpg.2015.0313
  6. H. Zhu, D. Yu, W. Zhu and Z. Zhou, "DC-link voltage regulation of bidirectional quasi-Z-source inverter for electric vehicle Applications," in Proc. IEEE-VPPC, pp. 1-5, 2016.
  7. M. Zhu, K. Yu, and F. L. Luo, "Switched inductor Z-source inverter," IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010. https://doi.org/10.1109/TPEL.2010.2046676
  8. H. Fathi and H. Madadi, "Enhanced-boost Z-source inverter with switched Z-impedance," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016. https://doi.org/10.1109/TIE.2015.2477346
  9. M. K. Nguyen, Y. C. Lim, and G. B. Cho, "Switched-inductor quasi-Z-source inverter," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3183-3191, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2141153
  10. K. Deng, J. Zheng, and J. Mei, "Novel switched-inductor quasi-Z-source inverter", Journal of Power Electronics, Vol. 14, No. 1, pp. 11-21, Jan. 2014. https://doi.org/10.6113/JPE.2014.14.1.11
  11. M. K. Nguyen, Y. C. Lim, and J. H. Choi, "Two switched-inductor quasi-Z-source inverters," IET Power Electron., Vol. 5, No. 7, pp. 1017-1025, Aug. 2012. https://doi.org/10.1049/iet-pel.2011.0297
  12. V. R. Vakacharla, M. Raghuram, and S. K. Singh, "Hybrid switched inductor impedance source converter - A decoupled approach," IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7509-7521, Nov. 2016. https://doi.org/10.1109/TPEL.2016.2535783
  13. Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. E. Town, "Impedance-source networks for electric power conversion part I: A topology review," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 699-716, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2313746
  14. Q. N. Trinh and H. H. Lee, "A new Z-source inverter topology with high voltage boost ability," Journal of Elect. Eng. & Technology, Vol. 7, No. 5, pp. 714-723, 2012. https://doi.org/10.5370/JEET.2012.7.5.714
  15. D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Generalized multicell switched-inductor and switched-capacitor Z-source inverter," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 837-848, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2204776
  16. W. Qian, F. Z. Peng, and H. Cha, "Trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2122309
  17. S. D. Tavakoli, J. Khajesalehi, M. Hamzeh, and K. Sheshyekani, "Decentralised voltage balancing in bipolar dc microgrids equipped with trans-Z-source interlinking converter," IET Renew. Power Gener., Vol. 10, No. 5, pp. 703-712, May 2016. https://doi.org/10.1049/iet-rpg.2015.0222
  18. S. Shubhra and S. Misha, "A coupled inductor based high boost inverter with sub-unity turns-ratio range," IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7534-7543, Nov. 2016. https://doi.org/10.1109/TPEL.2016.2543499
  19. M. K. Nguyen, Y. C. Lim, J. H. Choi, and Y. O. Choi, "Trans-switched boost inverters," IET Power Electron., Vol. 9, No. 5, pp. 1065-1073, Apr. 2016. https://doi.org/10.1049/iet-pel.2015.0202
  20. Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, G. E. Town, and S. Yang, "Impedance-source networks for electric power conversion part II: Review of control and modulation techniques," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1887-1906, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2329859
  21. M. Shen, J. Wang, A. Joseph, F. Z. Peng, L. M. Tolbert, and D. J. Adams, "Constant boost control of the Z-source inverter to minimize current ripple and voltage stress," IEEE Trans. Ind. Appl., Vol. 42, No. 3, pp. 770-778, May/Jun. 2006. https://doi.org/10.1109/TIA.2006.872927