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Abstract  

 

The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation 
in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its 
feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) 
compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate 
reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on 
this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate 
instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The 
analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output 
capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The 
study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results 
are provided to verify the analysis results. 
 
Key words: Buck converter, Constant on-time current-mode control (COT-CMC), Proportional-integral (PI) compensator, 
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I. INTRODUCTION 

The current-mode control (CMC) architecture for switching 
dc-dc converters has been widely used in various applications 
[1]-[6]. The CMC architecture has two feedback loops, an 
inner current loop and an outer voltage loop. Typically, an 
inductor current is used as the control variable in the inner 
current loop, whereas an error amplifier with its corresponding 
proportional-integral (PI) compensator is used in the outer 
voltage loop when the effect of the zero introduced by the 
output capacitor equivalent series resistance (ESR) can be 

neglected [7]. There are two different current-mode control 
architectures, the constant-frequency current-mode control 
(CF-CMC) and the variable-frequency current-mode control 
(VF-CMC) [8], where the CF-CMC includes a 
peak-current-mode control and a valley-current-mode control, 
and the VF-CMC includes a constant on-time current-mode 
control (COT-CMC), a constant off-time current-mode control 
and a hysteresis current-mode control [2]. 

The instabilities and dynamical behaviors of CF-CMC 
switching dc-dc converters have been widely studied [9]-[26]. 
Subharmonic oscillation exists in the current loop of switching 
dc-dc converters with the peak-current-mode control when d > 
50% (or with the valley-current-mode control when d < 50%) 
[2]. For the prediction of instability and optimal designs of a 
CF-CMC switching dc-dc converter, various modeling and 
analysis methods, such as discrete-time modeling [10], 
sampled-data modeling [11], and other improved modeling and 
analysis methods [12], [13], have been proposed. However, 
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when the effect of voltage ripple in the outer voltage loop 
cannot be ignored, the operation range of the subharmonic 
oscillation is enlarged in CF-CMC buck converters [9], [25], 
whereas the operation range of the subharmonic oscillation is 
reduced in CF-CMC boost-like converters [26].  

Furthermore, by using dynamical analysis methods based on 
bifurcation theory, some complex nonlinear behaviors, such as 
chaos [15], [16], coexisting fast-scale and slow-scale instability 
[17], [18], missed switching phenomenon [19], and 
symmetrical dynamics [20], are revealed. Then the 
operation-state region classifications and instability boundaries 
are obtained [21]-[23]. This is helpful for the comprehensive 
understanding of the dynamical behaviors and to design the 
circuit parameters of CF-CMC switching dc-dc converters. 

Compared with conventional voltage-mode control, the 
CF-CMC provides better transient performance by replacing 
the saw-tooth waveform with an inductor current ripple as a 
modulation ramp [1]. However, ramp compensation is usually 
required in the feedback control loop of CF-CMC switching 
dc-dc converters to eliminate subharmonic oscillations [2], 
which lowers the transient performance of the converters [14]. 

When the voltage ripple of the outer voltage loop can be 
neglected, there is no subharmonic oscillation in the 
current-loop of VF-CMC switching dc-dc converters [8], [27], 
[28]. Without ramp compensation, VF-CMC can obtain better 
transient performance by designing a higher gain bandwidth [9]. 
Thus, VF-CMC is an alternative to CF-CMC to avoid 
subharmonic oscillations in the current loop [8]. However, it 
should be pointed out that when the feedback gain of the outer 
voltage loop of VF-CMC switching dc-dc converters is high 
enough, the outer loop voltage ripple cannot be ignored, which 
leads to the occurrence of subharmonic oscillations [9]. 

COT-CMC has been widely used to improve the light-load 
efficiency in various applications, such as voltage regulator 
modules (VRMs) and point of load (POL) converters [5], [6], 
[29]-[31]. It is observed that when an output capacitor with a 
small capacitance, such as a ceramic capacitor, is utilized, 
subharmonic oscillations also occurs in COT-CMC buck 
converters. However, there has been no detailed analysis of the 
subharmonic instability in COT-CMC buck converters so far. 

The describing function method is widely used to investigate 
small-signal characteristics and open-loop stability for 
VF-CMC switching dc-dc converters [8], [27], [30], [31]. 
However, the effect of the voltage ripple of the outer voltage 
loop on the stability of the converter is not included in these 
models. Recently, discrete-time modeling and Floquet theory 
have been used to analyze the closed-loop stability of 
constant-frequency ripple-based control buck converters [32]. 
However, COT-CMC is a kind of variable-frequency control, 
with no clock signal. Thus, its discrete-time model is an 
asynchronous-switching map model, which is similar to that of 
the voltage ripple-based COT control and fixed off-time (FOT) 
control buck converters [33], [34].  

The COT control and FOT control buck converters reported 
in [33] and [34] are second-order circuits. However, a 
COT-CMC buck converter with a PI compensator is a 
third-order circuit. In this paper, by considering that the 
compensation capacitor voltage in a PI compensator is a linear 
combination of the inductor current and the output capacitor 
voltage, an accurate reduced-order asynchronous-switching 
map model of a COT-CMC buck converter with a PI 
compensator is established. Based on the model, a 
design-oriented stability analysis of the circuit parameters has 
been performed. Furthermore, the critical condition for 
subharmonic instability is obtained by using an approximate 
asynchronous-switching map model. This is helpful to 
understand the instability behaviors and to design the circuit 
parameters of VF-CMC switching dc-dc converters. 

This paper is organized as follows. Section II elaborates on 
the operational principle of a COT-CMC buck converter with a 
PI compensator operating in the continuous conduction mode 
(CCM) as well as the subharmonic oscillation phenomenon 
caused by an output capacitor with a small capacitance or a PI 
compensator with a high feedback gain. In Section III, by using 
two-order state equations in two switch states, a reduced-order 
piecewise smooth continuous model is described. Furthermore, 
an accurate reduced-order asynchronous-switching map model 
is established, and the dynamic behaviors with variations of the 
output capacitance and feedback gain are investigated. In 
Section IV, an approximate critical instability condition is 
derived, and four stability boundaries in four different circuit 
parameter spaces are yielded. In Section V, a hardware 
experimental prototype is provided to verify the theoretical 
analysis results. Some conclusions are summarized in Section 
VI. 

 

II. SUBHARMONIC OSCILLATION IN A COT-CMC 
BUCK CONVERTER WITH A PI COMPENSATOR 

A. COT-CMC Buck Converter with a PI Compensator 

The schematic diagram of a COT-CMC buck converter 
with a PI compensator is shown in Fig. 1(a). Its power stage 
consists of an input voltage source Vin, a switch S, a diode D, 
an inductor L, an output capacitor C with an ESR r, and a 
load resistor R. The COT-CMC controller consists of a 
current-sensing circuit with a gain Rs, a PI compensator, a 
comparator, an RS trigger and an ON-Timer. 

The output voltage vo(t) of the COT-CMC buck converter 
can be expressed as: 

o ( ) [ ( ) ( )]L Cv t ri t v t               (1) 

where κ = R/(R+r), and iL(t) and vC(t) are the inductor current 
and output capacitor voltage, respectively. 

The control signal vcon(t) can be deduced as: 

con ref o( ) (1 ) ( ) ( )av t g V gv t v t            (2) 

where Vref is the reference voltage, g = Ra/Rin is the feedback 
gain of the PI compensator, and va is the compensation  
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Fig. 1. COT-CMC buck converter with PI compensator. (a) 
Circuit schematic diagram. (b) Key operation waveforms. 
 
capacitor voltage. 

A COT-CMC buck converter with a PI compensator is a 
structure-varying and piecewise-linear dynamic system. Fig. 
1(b) shows its key steady-state operation waveforms when 
operating in the CCM, where vo and Vo are the instantaneous 
output voltage and the averaged output voltage, VS is the 
control pulse voltage, TON is the constant on-time interval, 
tOFF is the off-time interval modulated by the sensed inductor 
current RsiL and the control signal vcon, and TS is the switching 
cycle.  

For a COT-CMC buck converter operating in the CCM, its 
operation can be identified as [17]: 

Switch state 1: switch S is on and diode D is off 
Switch state 2: switch S is off and diode D is on 

In switch state 1, switch S is turned on and RsiL increases. 
After a preset on-time TON, switch S is turned off, the 
converter enters switch state 2 from switch state 1, and RsiL 

decreases. Once RsiL decreases to vcon, switch S is turned on 
again, and a new switching cycle is initiated. Therefore, the 
switched condition of the converter can be written as: 

s con( ) ( )LR i t v t                 (3) 

B. Subharmonic Oscillation Phenomenon 

In general, when the voltage ripple of an outer voltage loop 
can be ignored, a COT-CMC buck converter with a PI 
compensator operates in stable operation [8], [27], [28]. 
However, when the capacitance of an output capacitor is 
small or the feedback gain is high, a large voltage ripple exists 
in the outer voltage loop, which causes subharmonic  

TABLE I 
TYPICAL CIRCUIT PARAMETERS OF A COT-CMC BUCK 

CONVERTER WITH A PI COMPENSATOR 

Parameters Significations Values 

Vin Input voltage 12 V 
L Inductance 50 μH 
C Output capacitance 47 μF 
r Output capacitor ESR 5 mΩ 
R Load resistance 4 Ω 
Vref Reference voltage 5 V 
g Feedback gain of PI compensator 40 
Ca Compensation capacitance 10 nF 
Rs Current-sensing gain 1 V/A  
TON Constant on-time 2.5 μs 
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Fig. 2. Stable operation and subharmonic oscillation in a 
COT-CMC buck converter with a PI compensator. (a) C = 47 μF 
and g = 40, stable operation. (b) C = 30 μF and g = 40, 
subharmonic oscillation. (c) C = 47 μF and g = 60, subharmonic 
oscillation. 

 
oscillations. 

To show subharmonic oscillations in a COT-CMC buck 
converter with a PI compensator, typical circuit parameters as 
listed in Table I are designed. Fig. 2 shows simulation results 
under different output capacitances and feedback gains, while 
Fig. 2(a) shows simulation results with typical circuit 
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parameters as listed in Table I. This shows that the converter 
operates in a stable state. However, when C = 30 μF or g = 60 
and the other circuit parameters are as listed in Table I, the 
converter operates with subharmonic oscillation, which 
produces a large inductor current ripple and an output voltage 
ripple, as shown in Figs. 2(b) and 2(c). In addition, as 
observed in Figs. 2(b) and 2(c), when subharmonic oscillation 
occurs in the converter, two successive control pulses 
frequently appear in the control pulse train, which implies the 
occurrence of a pulse bursting phenomenon [35]. 

 

As shown in Fig. 2(a), if the capacitance of the output 
capacitor is large enough or if the gain of the PI compensator 
is low enough, the slope of the control signal vcon(t) becomes 
smaller than or equal to that of RsiL when switch S is turned 
on. Thus, vcon(t) is always lower than RsiL in the on-time 
interval, and the normal operation of the COT-CMC buck 
converter with a PI compensator can be ensured. On the other 
hand, as shown in Figs. 2(b) and 2(c), if the capacitance of an 
output capacitor is small enough or if the gain of a PI 
compensator is high enough, the slope of vcon(t) becomes 
larger than that of RsiL when switch S is turned on. Then the 
COT-CMC buck converter with a PI compensator operates 
abnormally and its stability is lost. Consequently, 
subharmonic oscillation in this kind of converter is obviously 
associated with the capacitance of the output capacitor, the 
feedback gain, and the current-sensing gain. Additionally, 
considering that vcon(t) is related to g, vo(t) and va(t), 
subharmonic oscillation may depend on other circuit 
parameters, such as r, κ, TON, etc.  

 

In the following sections of this paper, reduced-order 
asynchronous-switching mapping is considered to elaborate 
instability behaviors and dynamic mechanisms. In addition, 
the approximate critical instability condition is used to study 
the design-oriented stability boundaries for circuit 
parameters. 

 

III. ACCURATE REDUCED-ORDER ASYNCHRONOUS 
-SWITCHING MAP AND DYNAMIC BEHAVIOR 

A. Reduced-order Piecewise Smooth Continuous Model 

The converter shown in Fig. 1(a) has three state variables. 
These variables are the inductor current iL, output capacitor 
voltage vC and compensation capacitor voltage va. For a 
COT-CMC buck converter with a PI compensator, the power 
stage can be described by two-order state equations in two 
switch states, which are: 

 

in 1( ) ( )    ( ,  1,2)m m m mt t V t t t m    x A x B      (4) 
 

where x(t) = [iL(t) vC(t)]T, m represents the m-th switch state, 
tm–1 and tm denote the time instants at the beginning and end 
of the m-th switch state, and the matrices A’s and B’s are 
expressed as: 

1 2

r

L L

C RC

 

 

   
   

   

A A , 1

1

0
L
 
 
 
  

B , 2

0

0

 
  
 

B . 

In a COT-CMC buck converter with a PI compensator, 
the transition between two switch states is decided by a 
COT-CMC controller. For the PI compensator of the outer 
voltage loop as shown in Fig. 1(a), the compensation 
capacitor voltage va(t) in the m-th switch state is: 

1

ref
1 o 1( ) ( ) ( )d ( )

m

t

a a m mt
a a

g gV
v t v t v t t 

 
        (5) 

where τa = RaCa is the time constant of the PI compensator.  
According to (1) and (4), the output voltage vo(t) in the 

m-th switch state can be expressed as 

 o in( ) ( )mv t L V t F B x , where F = [1 0]. Thus, in the m-th 

switch state, by substituting vo(t) into (5), va(t) can be 
unified as: 

 

1 in ref 1

1

( ) ( ) ( )( )

( ) ( )

a a m m m
a

m
a

g
v t v t L V V t t

g
L t t





 



   

 

FB

F x x
   (6) 

From (6), it is known that va is a linear combination of iL 
and vC. Thus, a reduced-order piecewise smooth continuous 
model of the COT-CMC buck converter with a PI 
compensator can be represented by state equations (4). 

B. Accurate Reduced-order Asynchronous-switching Map 
Model 

When a COT-CMC buck converter with a PI compensator 
operates in the m-th switch state, its corresponding operation 
time interval is τm = tm – tm–1. Let x(tm–1) denote the state 
variable at the time instant tm–1. Then from (4), the state 
variable at the time instant tm can be solved as: 

1 in( ) ( ) ( ) ( )    ( 1,2)m m m m m mt t V m   x P x Q    (7) 

where: 

( )  
m m m

m m

m m m

a b b
L

b a b
C

 
 

 
 

   
  
   

P , 

1 1

1 1

1 1

1 1

( )

1

R L
a b

R R RL

a b






   
  
    

Q , 2 2

0
( )

0


 
  
 

Q , 

1

2

r

RC L

    
 

, 
1

2

r

RC L

    
 

, 2

LC

   , 

cos m
m ma e   , sin m

m mb e   . 

The main operation waveforms of a COT-CMC buck 
converter with a PI compensator in the n-th switching cycle 
are shown in Fig. 3. In Fig. 3, xn = [iL,n, vC,n]

T, va,n and vcon,n 
are the sampling values of x = [iL, vC]T, va and vcon at the 
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beginning of the n-th control pulse, respectively. xn+1 = [iL,n+1, 
vC,n+1]

T, va,n+1 and vcon,n+1 are the sampling values of x = [iL, 
vC]T, va and vcon at the beginning of the (n+1)-th control pulse, 
respectively. Meanwhile x(t1) = [iL(t1), vC(t1)]

T and va(t1) are 
the sampling values of x = [iL, vC]T and va at the falling edge 
of the n-th constant on-time control pulse, respectively. 

In the n-th switching cycle, for switch state 1, i.e. when 
switch S is on and diode D is off, xn is the initial state 
variable, and the operation time interval τ1 = t1 – t0 is preset as 
TON. According to (6) and (7), the state variable x(t1) and the 
corresponding compensation capacitor voltage va(t1) are: 

 1 1 1 1 ON 1 ON in( ) ( )  ( ) ( ) ( )L C nt i t v t T T V  x P x Q      (8a) 

and: 

1 , 1 in ref ON 1( ) ( ) [ ( ) ]a a n n
a a

g g
v t v L V V T L t

 
    FB F x x  (8b) 

For switch state 2, i.e. when switch S is off and diode D is 
on, x(t1) is the initial state variable, and the operation time 
interval is τ2 = t2 – t1 = tOFF. According to (6) and (7), at the 
beginning of the (n+1)-th control pulse, the state variable xn+1 
and the corresponding compensation capacitor voltage va,n+1 
are given as: 

1 2 OFF 1( ) ( )n t t x P x               (9a) 

and: 

 , 1 1 2 in ref OFF 1 1( ) ( ) ( )a n a n
a a

g g
v v t L V V t L t

      FB F x x    

(9b) 
where tOFF can be obtained by numerically solving the 
following transcendental equation: 

s 1 con, 1

ref , 1 , 1 , 1(1 ) ( )
n n

L n C n a n

R v
g V g ri v v

 

  


    

Fx
  (10) 

Consequently, an accurate reduced-order asynchronous- 
switching map model of the COT-CMC buck converter with 
a PI compensator can be given as: 

 1 2 OFF 1 ON 1 ON in( ) ( ) ( )n nt T T V  x P P x Q      (11) 

From (11), the Jacobian can be obtained as: 

11 12

21 22
n

J J

J J

 
  
 

J               (12) 

where , 1
11

,

L n

L n

i
J

i





, , 1
12

,

L n

C n

i
J

v





, , 1
21

,

C n

L n

v
J

i





 and 

, 1
22

,

C n

C n

v
J

v





 are given in the Appendix. 

The eigenvalues of the Jacobian in (12) can be obtained by 
solving the characteristic equation in λ: 

det 0n  1 J              (13) 

From (12), the solutions of (13) can be solved as: 

1 2 11 220  and   J J              (14) 

Since λ1 = 0 is always located in a unit circle, the stability of 

the COT-CMC buck converter with a PI compensator is 

determined by the location of λ2. 

 
 

Fig. 3. Main steady-state operation waveforms in the n-th 
switching cycle. 
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Fig. 4. Dynamic behaviors with: (a) C decreasing and (b) g 
increasing, where vo,n and iL,n are the output voltage vo and 
inductor current iL at the beginning of each control pulse, 
respectively. 

C. Dynamic Behaviors with Variations of the Output 
Capacitance and Feedback Gain 

Based on the accurate reduced-order asynchronous- 
switching map model (11) and its Jacobian (12), the 
dynamical behaviors of a COT-CMC buck converter with a 
PI compensator with variations of the output capacitance and 
feedback gain can be investigated. 

For typical circuit parameters, as listed in Table I, and 
initial state variables x0 = [0, 0]T and va,0 = 0, bifurcation 
diagrams of iL,n and vo,n with respect to the output capacitance 
C and feedback gain g are depicted in Figs. 4(a) and 4(b), 
respectively. With a decrease of C or an increase of g, the 
period-doubling bifurcations occur at C = 41.25 μF or g =  
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Fig. 5. Loci of two eigenvalues for the converter, where “*” and 
“+” denote λ1 and λ2, respectively: (a) C decreasing from 41.9 μF 
to 40.9 μF; (b) g increasing from 45.9 to 46.9; (a2) and (b2) are 
close-up views of the eigenvalue λ2 in (a1) and (b1). 
 
46.85, and the converter abruptly enters the chaotic operation 
state from the period-1 oscillation state, leading to the 
occurrence of instability.  

Additionally, the loci of two eigenvalues with a decrease of 
C or an increase of g are depicted in Fig. 5, where λ1 is 
always located in the unit circle and λ2 leaves the unit circle 
via –1 with C decreasing from 41.9 μF to 40.9 μF or g 
increasing from 45.9 to 46.9, which implies that the converter 
is out of stable operation. 

Obviously, the circuit parameters, including the output 
capacitance and feedback gain, have a significant effect on 
the stability of the COT-CMC buck converter with a PI 
compensator, i.e., subharmonic oscillation occurs when the 
output capacitance is small or the feedback gain is high. 
 

IV. APPROXIMATE CRITICAL INSTABILITY 
CONDITION AND STABILITY BOUNDARY 

The accurate model (11) derived in Section III is infeasible 
for deriving the explicit expressions of its Jacobi matrix and it 
is not convenient to design the circuit parameters of the 
COT-CMC buck converter with a PI compensator. In this 
section, an approximate reduced-order asynchronous- 
switching map model is established. A design-oriented 
closed-loop instability condition is obtained from this model. 

A. Approximate Critical Instability Condition 

Compared with the averaged output voltage, the ripple of 
the output voltage is small and can be ignored. Thus, both the 
rising slope m1 = (Vin – Vo)/L and the falling slope ‒m2 = 
‒Vo/L of the inductor current can be approximated as 
constants in each switching cycle. 

In the n-th switching cycle, as shown in Fig. 3, the inductor 
current iL(t), output capacitor voltage vC(t) and compensation 

capacitor voltage va(t) at t = t1 and t = t2 are approximated as: 

1 , 1 ON( )L L ni t i m T               (15a) 

, o 21
1 , ON ON( )

2
L n

C C n

i I m
v t v T T

C C


         (15b) 

1 , in ref ON 1 ,( ) ( ) [ ( ) ]a a n L L n
a a

g g
v t v V V T L i t i

 
        (15c) 

and: 

2 , 1 1 2 OFF( ) ( )L L n Li t i i t m t            (16a) 

21 o 2
2 , 1 1 OFF OFF

( )
( ) ( )

2
L

C C n C

i t I m
v t v v t t t

C C


        (16b) 

2 , 1 1 ref OFF , 1 1( ) ( ) ( )a a n a L n L
a a

g g
v t v v t V t L i i t

          (16c) 

where Io = Vo/R stands for the averaged output current. 
The time interval tOFF of switch state 2 in (16) can be 

obtained by substituting (15) and (16) into (10), which gives 
rise to: 

22
OFF s 2 , 1 ON o OFF

, o 21
s , 1 ON , ON ON

, ref

( ) ( )
2

( )( ) ( )
2

(1 )

L n

L n
L n C n

a n

g m g
t R g r m i m T I t

C C
i I m

R g r i m T g v T T
C C

v g V

 

 

       


     

  

(17) 

It is noted that tOFF is not a constant but a variable time 
interval. Substituting (15a) and (15b) into (16a) and (16b), an 
approximate reduced-order asynchronous-switching map 
model of the COT-CMC buck converter with a PI 
compensator is summarized as: 

, 1 , 1 ON 2 OFF
2 2

ON OFF 1 ON 1 ON OFF 2 OFF
, 1 , , o( )

2 2

L n L n

C n C n L n

i i m T m t
T t m T m T t m t

v v i I
C C C C





         
 

(18) 
By substituting (18) into (12), the Jacobian for the 

approximate model (18) can be calculated as: 

OFF OFF
2 2

, ,

ON OFF OFF OFF

, ,

1

1

L n C n

n

L n C n

t t
m m

i v

T t t t

C i v
 

      
   

  
   

J        (19) 

where: 
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  

From (17), OFF

,L n

t

i


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 and OFF

,C n

t

v




 in (19) can be obtained as: 

OFF s ON OFF

, 2 s , o 1 ON 2 OFF

( ) ( )

( ) ( )L n L n

t R g r C g T t

i m R g r C g i I mT m t

 
 

   

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 (20a) 

OFF

, 2 s , o 1 ON 2 OFF( ) ( )C n L n

t g C

v m R g r C g i I mT m t


 




     
 (20b) 

In the neighborhood of the instability boundary, there exist 
the following approximate conditions: 

, o 1 ON0.5L ni I m t  , OFF 1 ON 2t m T m     (21) 
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By substituting (20) and (21) into (19), two eigenvalues of 
(19) can be written as: 

2 s 2 1 ON
1 2

2 s 1 ON

2 ( ) (2 )
0  and   

2 ( )

m g r R C g m m T

m g r R C g m T

  
 
  

 
 

 (22) 

To ensure that the COT-CMC buck converter operates in a 
stable state, it is necessary that both eigenvalues are inside 
the unit circuit, i.e., |λ2| < 1. Thus, an approximate instability 
condition is: 

ON2rC T                  (23a) 

or: 

s
ON critical

ON

2
2   and  =

( 2 )

R C
rC T g g

T rC
 


   (23b) 

where gcritical is the instability boundary of the feedback gain 
when 2rC < TON, which can also be derived using the 
harmonic balance analysis reported in [36]. 

The result of (23) indicates that when 2rC > TON, the 
converter is always stable. However, when 2rC < TON, the 
converter is stable if g < gcritical, otherwise it is unstable. The 
instability of the COT-CMC buck converter with a PI 
compensator is affected by the output capacitance, output 
capacitor ESR, feedback gain, load resistance, 
current-sensing gain and constant on-time. Additionally, 
when compared with the load resistance, the output capacitor 
ESR is very small, i.e., κ = R/(R+r) ≈ 1. Then the effect of the 
load resistance on the stability of the COT-CMC buck 
converter can be ignored. 

B. Stability Boundary in the Circuit Parameter Space 

For typical circuit parameters, as listed in Table I, based on 
the approximate critical instability condition (23b), the 
stability boundaries between the stable and unstable operation 
regions in four different circuit parameter spaces, including 
C-g, r-g, Rs-g and TON-g, are plotted in Figs. 6(a), 6(b), 6(c), 
and 6(d), respectively. They are denoted as ‘Appr. Condition’. 
The approximate critical instability boundaries between the 
stable and unstable operation regions are simultaneously 
verified by MATLAB numerical simulations based on the 
accurate map model (11) (denoted as ‘Accurate model’) and 
PSIM circuit simulations shown in Fig. 1 (denoted as ‘PSIM 
simulation’). The results illustrate that the unstable operation 
regions are reduced with an increase of the output 
capacitance, output capacitor ESR and current-sensing gain 
or with a decrease of the feedback gain and constant on-time. 
 

V. EXPERIMENTAL VERIFICATIONS 

To verify the above theoretical analysis results, an 
experimental prototype of the COT-CMC buck converter 
with a PI compensator is built. Taking the feedback gain g, 
output capacitance C, output capacitor ESR r, current-sensing 
gain Rs and constant on-time TON as adjustable circuit 
parameters, the other circuit parameters are listed in Table I. 
According to Fig. 6 and (23b), for eight sets of circuit 

g

 

g

 

 

 
 

Fig. 6. Stability boundaries in: (a) the C-g space; (b) the r-g 
space; (c) the Rs-g space; (d) the TON-g space. The curve marked 
with “*” is simulated from the accurate map model (11), the 
curve marked with “+” is calculated from the approximate 
critical instability condition (21b), and the curve marked with 
“○” is plotted by a PSIM circuit simulation. 
 
parameters g, C, r, Rs and TON, listed in Table II, the relations 
between g and gcritical, and the corresponding stability are 
obtained and summarized in Table II. 
 

Fig. 7 shows experimental results for the different circuit 
parameters g, C, r, Rs and TON listed in Table II. From Fig. 7, 
it can be seen that when the output capacitance, output  
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TABLE II 
THEORETICAL RESULTS WITH DIFFERENT CIRCUIT PARAMETERS 

No. 
Adjustable  
circuit parameters 

Relations of  
g and gcritical 

Stability

a1 g = 40, C = 30 μF g > gcritical = 27.3 Unstable
a2 g = 40, C = 60 μF g < gcritical = 63.2 Stable  
b1 g = 60, r = 5 mΩ g > gcritical = 46.4 Unstable
b2 g = 60, r = 11 mΩ g < gcritical = 64.3 Stable  
c1 g = 45, Rs = 0.6 V/A g > gcritical = 27.8 Unstable
c2 g = 45, Rs = 1.3 V/A g < gcritical = 60.3 Stable  
d1 g = 35, TON = 4 μs g > gcritical = 26.7 Unstable 
d2 g = 35, TON = 2.5 μs g < gcritical = 46.7 Stable  

 

 

 

Δvo(0.05 V/div) 

iL(0.5A/div)

VS(5V/div)

(c2)

t (4μs/div)  

Δvo (0.05 V/div) 

iL (0.5A/div)

VS (5V/div)

(d2)

t (4μs/div)  
 

Fig. 7. Experimental results for different circuit parameters g, C, 
r, Rs and TON listed in Table II, where ∆vo, iL and Vs denote 
output voltage ripple, inductor current and control pulse voltage, 
respectively. 
 
capacitor ESR and current-sensing gain are small, or when 
the constant on-time is large, the COT-CMC buck converter 
with a PI compensator operates in subharmonic oscillation 
with a large inductor current ripple and output voltage ripple. 
Otherwise, the converter operates in a stable period-1 state 
with a small inductor current ripple and an output voltage 
ripple. Obviously, these experimental results verify the 
theoretical analysis results in Table II. Specially, when 

subharmonic oscillation occurs, two or more successive 
control pulses may appear in the control pulse voltage, as 
observed from Figs. 7(a1), 7(b1), 7(c1) and 7(d1), which 
implies the occurrence of the pulse bursting phenomenon 
[35]. 
 

VI. CONCLUSIONS 

When an output capacitor with a small capacitance or a PI 
compensator with a high feedback gain is used, the effect of 
the outer loop voltage ripple on the subharmonic oscillation 
in a COT-CMC buck converter with a PI compensator cannot 
be ignored. To investigate its instability mechanism, an 
accurate reduced-order asynchronous-switching map model is 
established and dynamic behaviors with variations of the 
output capacitance and feedback gain are analyzed. 
Furthermore, an approximate reduced-order asynchronous- 
switching map model is built and an approximate critical 
instability condition is derived. Through numerical 
simulations of the accurate map model and the approximate 
critical instability condition along with PSIM circuit 
simulations, the stability boundaries between stable and 
unstable operation regions are simulated in four different 
circuit parameter spaces. The analysis and experimental 
results indicate that the instability is mainly affected by the 
output capacitance, output capacitor ESR, feedback gain and 
constant on-time. The unstable regions are reduced with an 
increase of the output capacitance, output capacitor ESR and 
current-sensing gain or a decrease of the feedback gain and 
constant on-time. The investigations in this paper provide a 
guideline for the circuit parameter selection of a COT-CMC 
buck converter in practical designs. It can also promote the 
fundamental theory development of VF-CMC switching 
dc-dc converters. 

 

APPENDIX 

Each of the elements of the Jacobian in (12) for the 
accurate model in (11) are derived as follows. 

Let: 

2 2 2 2I a a b b
   


    , 2 2( )V b a
L
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  , 

2 2

+ 1 2 1 2 2 1 1 22
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a a a b a b b b
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  
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
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C

  


  , 2 2 2 2V b b a a
   
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as well as: 

1 1 1= ( ) ( )I L V Ci t v t   , 2 1 1= ( ) ( )I L V Ci t v t   . 
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