DOI QR코드

DOI QR Code

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings

유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Moon, Sung Jin (Department of Chemical Engineering, Changwon National University) ;
  • Park, Jung Ju (R & D Center, Hankyung TEC)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 문성진 (창원대학교 화공시스템공학과) ;
  • 박정주 (한경 TEC 기술연구소)
  • Received : 2017.05.17
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

백색을 띄고 물리적 화학적으로 안정한 지르코니아는 열전도도가 낮고 강도와 인성, 내식성이 우수하여 단열재, 내화물과 같은 고온 재료와 각종 산업용 구조세라믹스에 사용되고 있다. 이러한 지르코니아를 낮은 경도 및 굴절률 등과 같은 단점을 가진 고분자 코팅제에 도입하게 되면 화학적, 전기적, 광학적인 특성이 향상된다. 이와 같이 유기 소재에 무기 소재를 혼합하여 사용하는 유-무기 하이브리드 코팅을 목적으로 본 연구에서는 지르코니아 표면에 trimethylchlorosilane(TMCS)과 hexamethyldisilazane(HMDZ)을 사용하여 실릴화반응을 통한 $-CH_3$기를 도입하여 소수성을 나노지르코니아 표면에 도입하였다. 소수화된 지르코니아 표면에서의 TMCS와 HMDZ에 의해 도입된 $Si-CH_3$의 존재는 FT-IR ATR spectroscopy를 통해 확인하였고, silicon 원소의 존재를 FE-SEM/EDS와 ICP-AES를 통해 확인하였다. 또한, 개질 전후의 지르코니아를 아크릴레이트 단량체에 분산하여 침강속도를 확인하여 분산성이 향상되는 것을 확인하였다. 지르코니아 입자의 크기 및 분포는 입도 분석기를 통해 확인하였으며, BET 분석을 통해 개질 반응 전후의 비표면적은 $18m^2/g$ 정도로 큰 변화가 없었다.

Keywords

References

  1. K. U. Jung, T. G. Lee, and C. S. Mun, Super hydrophilic properties of $ZrO_2$ thin film containing $TiO_2$ photo-catalysis, Kor. J. Mat. Res., 18(4), 211 (2008). https://doi.org/10.3740/MRSK.2008.18.4.211
  2. B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M. K. Moodley, R. Ladchumananandasivam, and M. Maaza, Studies on structural and optical properties of $ZrO_2$ nanopowder for opto-electronic applications, J. Alloys and Comp., 694, 556 (2017). https://doi.org/10.1016/j.jallcom.2016.10.002
  3. K. A. Aly, N. M. Khalil, Y. Algamal, and Q. M. A. Saleem, Estimation of lattice strain for zirconia nano-particles based on Williamson-Hall analysis, Mat. Chem. Phys., 193, 182 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.059
  4. M. J. Kim, I. S. Kim, B. H. Choi, and W. G. Kim, Surface characteristics of ground and post-sintered zirconia, Kor. J. Dent. Tech., 38(3), 157 (2016). https://doi.org/10.14347/kadt.2016.38.3.157
  5. H. Y. Yun, C. S. Park, M. Y. Shin, and J. J. Ahn, Study on synthesis and characterization of zirconia nano powder, Petro. Soc. Kor., 48 (2004).
  6. H. Cheng, Li. Wu, J. Ma, Z. Zhang, and L. Qi, The effects of pH and alkaline earth ions on the formation of nanosized zirconia phases under hydrothermal conditions, J. Euro. Cer. Soc., 19, 1675 (1999). https://doi.org/10.1016/S0955-2219(98)00266-0
  7. H. Kumazawa, T. Inoue, and E. Sada, Synthesis of fine spherical zirconia particles by controlled hydrolysis of zirconium alkoxide in the high temperature range above $50^{\circ}C$, Chem. Eng. J., 55, 93 (1994).
  8. G. Dell'Agli and G. Mascolo, Hydrothermal synthesis of $ZrO_2-Y_2O_3$ solid solutions at low temperature, J. Euro. Cer. Soc., 20, 139 (2000). https://doi.org/10.1016/S0955-2219(99)00151-X
  9. K. Y. Oh, Properties of yttria stabilized zirconia-alumina powders prepared by coprecipitation method, J. Kor. Cer. Soc., 34(11), 1113 (1997).
  10. J. J. Choi, N. U. Kim, C. Y. Ahn, and K. C. Song, Preparation of hard coating films with high refractive index using Organic- Inorganic hybrid coating solutions, Kor. Chem. Eng. Res., 52(3), 388 (2014). https://doi.org/10.9713/kcer.2014.52.3.388
  11. S. Kango, S. Kalia, A. Celli, J. Nujuguna, Y. Habibi, and R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Prog. Polym. Sci., 38, 1232 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
  12. R. S. Faibish, and Y. Cohen, Foulingresistant ceramic-supported polymer membranes for ultrafiltration of oil-inwater microemulsions, J. Memb. Sci., 185, 129 (2001). https://doi.org/10.1016/S0376-7388(00)00595-0
  13. J. K. Park, K. C. Song, H. U. Kang, and S. H. Kim, Preparation of hydrophilic coating film using GPS(Glycidoxypropyl Trimethoxysilane), Hwahak Konghak, 40(6), 735 (2002).
  14. Y. Cui, Z. Chen, and X. Liu, Preparation of UV-curing polymer-$ZrO_2 hybrid nanocomposites via autohydrolysis sol-gel process using zirconium oxychloride octahydrate coordinated with organic amine, Prog. Org. Coat., 100, 178 (2016). https://doi.org/10.1016/j.porgcoat.2016.03.028
  15. H. Althues, J. Henle, and S. Kaskel, Functional inorganic nanofillers for transparentpolymers, Chem. Soc. Rev., 36, 1454 (2007). https://doi.org/10.1039/b608177k
  16. A. Tadjarodi, M. Haghverdi, V. Mohammadi, and M. Rajabi, Synthesis and characterization of hydrophobic silica aerogel by two step(Acid-Base) Sol-Gel process, J. Nanostructures, 3, 181 (2013).
  17. A. P. Rao, A. V. Rao, and G. M. Pajonk, Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents," Appl. Surf. Sci., 253(14), 6032 (2007). https://doi.org/10.1016/j.apsusc.2006.12.117
  18. S. Scholz, S. Kaskel, Surface functionalization of $ZrO_2$ nanocrystallites for the integration into acrylate nanocomposite films, J. Col. Interface Sci., 323, 84 (2008). https://doi.org/10.1016/j.jcis.2008.03.051
  19. K. Luo, S. Zhou, L. Wu, and G. Gu, Dispersion and functionalization of nonaqueous synthesized zirconia nanocrystals via attachment of silane coupling agents, Langmuir, 24, 11497 (2008). https://doi.org/10.1021/la801943n
  20. W. F. A. Besling, A. Goossens, B. Meester, and J. Schoonman, Laserinduced chemical vapor deposition of nanostructured silicon carbonitride thin films, J. Appl. Phys., 83, 544 (1998). https://doi.org/10.1063/1.366669
  21. S. Y. Park, N. Kim, U. Y. Kim, S. I. Hong and H. Sasabe, Plasma polymerization of hexamethyldisilazane, Polym. J., 22(3), 242 (1990). https://doi.org/10.1295/polymj.22.242