DOI QR코드

DOI QR Code

The joint effect of different concentration of Cd2+ and ionic liquid on the growth of wheat seedlings

  • Chen, Zhonglin (School of Environmental Science, Liaoning University) ;
  • Zhou, Qian (School of Environmental Science, Liaoning University) ;
  • Leng, Feng (School of Environmental Science, Liaoning University) ;
  • Dai, Bing (School of Environmental Science, Liaoning University) ;
  • Zhao, Xueyang (School of Environmental Science, Liaoning University) ;
  • Zhang, Weichen (School of Environmental Science, Liaoning University) ;
  • Liu, Neng (School of Environmental Science, Liaoning University) ;
  • Guan, Wei (School of Environmental Science, Liaoning University) ;
  • Liu, Kui (Liaoning University Press)
  • 투고 : 2016.09.11
  • 심사 : 2017.03.08
  • 발행 : 2017.09.30

초록

The joint effect of different concentrations (0.05-0.375 mmol/L) of $Cd^{2+}$ and various concentrations (50-400 mg/L) of [$C_3mim$][OAc] on the growth and physiology of wheat seedlings were investigated. The toxicity of $Cd^{2+}$ could be significantly reduced by lower concentrations (50-200 mg/L) of [$C_3mim$][OAc]. With higher concentration (${\geq}300mg/L$) of [$C_3mim$][OAc], the reduction became less, and compared to $Cd^{2+}$ stress only, the toxicity of 400 mg/L [$C_3mim$][OAc] increased. As for different $Cd^{2+}$ concentrations, the optimal reduction depends on the balance between the exact concentration of $Cd^{2+}$ and [$C_3mim$][OAc]: With low $Cd^{2+}$ concentration (0.05-0.250 mmol/L) requiring 50 mg/L [$C_3mim$][OAc], it could reach a dynamic equilibrium, while high $Cd^{2+}$ concentration (0.375 mmol/L) requiring 100 mg/L [$C_3mim$][OAc]. The growth and physiological indexes of wheat seedlings show a decrease in toxicity compared to the Cd alone treatment, when the dynamic equilibrium is reached. The concentration of $Cd^{2+}$ in leaf tissues showed that low concentration (50-200 mg/L) of [$C_3mim$][OAc] can reduce the toxicity of $Cd^{2+}$ (0.05-0.375 mmol/L) by decreasing the level of $Cd^{2+}$ concentration in the tissues, whereas the higher concentration (${\geq}300mg/L$) of [$C_3mim$][OAc] can increase the concentration of $Cd^{2+}$.

키워드

참고문헌

  1. He B, Yun Z, Shi J, Jiang G. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chinese Sci. Bull. 2013;2:134-140.
  2. Zhang L, Li P, Li X, Meng X, Xu C. Effects of cadmium stress on growth and physiological characteristics of wheat seedlings. J. Appl. Ecol. 2005;24:458-460.
  3. Li X, Zhao D, Fei Z, Wang L. Applications of functionalized ionic liquids. Sci. China Ser. B: Chem. 2006;49:385-401. https://doi.org/10.1007/s11426-006-2020-y
  4. Tariq M, Freire MG, Saramago B, Coutinho JA, Lopes JN, Rebelo LP. Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 2012;41:829-868. https://doi.org/10.1039/C1CS15146K
  5. Marr PC, Marr AC. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chem. 2016;18:105-128. https://doi.org/10.1039/C5GC02277K
  6. Peric B, Sierra J, Marti E, Cruanas R, Garau MA. Quantitative structure-activity relationship (QSAR) prediction of (eco) toxicity of short aliphatic protic ionic liquids. Ecotoxicol. Environ. Saf. 2015;115:257-262. https://doi.org/10.1016/j.ecoenv.2015.02.027
  7. Jing C, Mu L, Ren T, Li B, Chen S, Nan W. Effect of 1-octyl- 3-methylimidazolium chloride on cell replication and membrane permeability of Escherichia coli $DH5{\alpha}$. Bull. Environ. Contam. Toxicol. 2014;93:60-63. https://doi.org/10.1007/s00128-014-1269-7
  8. Pernak J, Goc I, Mirska I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 2004;6:323-329. https://doi.org/10.1039/b404625k
  9. Lee SM , Chang WJ, Choi AR, Yoon MK. Influence of ionic liquids on the growth of Escherichia coli. Korean J. Chem. Eng. 2005;22:687-690. https://doi.org/10.1007/BF02705783
  10. Jastorff B, Molter K, Behrend P, et al. Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products. Green Chem. 2005;7:362-372. https://doi.org/10.1039/b418518h
  11. Liu P, Ding Y, Liu H, Sun L, Li X, Wang J. Toxic effects of 1-methyl-3-octylimidazolium bromide on the wheat seedlings. J. Environ. Sci. 2010;22:1974-1979. https://doi.org/10.1016/S1001-0742(09)60348-X
  12. Chen Z, Feng Y, Wang J, Wang J, Guan W, Zhang H. Effects of [$C_2mim$][OAc] (1-ethyl-3-methyl-imidazolium acetate) on the growth of wheat seedlings under $Cd^{2+}$ stress. Bull. Environ. Contam. Toxicol. 2014;92:714-718. https://doi.org/10.1007/s00128-014-1267-9
  13. Chen Z, Feng Y, Wang Y, et al. Study on the growth and photosynthetic characteristics of wheat seedlings under [$C_4mim$][OAc] (1-butyl-3-methyl-imidazoliumacetate) with $Cd^{2+}$ stress. Bull. Environ. Contam. Toxicol. 2015;94:627-632. https://doi.org/10.1007/s00128-015-1519-3
  14. Cvjetko Bubalo M, Hanousek K, Radosevic K, Gaurina Srcek V, Jakovljevic T, Radojcic Redovnikovic I. Imidiazolium based ionic liquids: Effects of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol. Environ. Saf. 2014;101: 116-123. https://doi.org/10.1016/j.ecoenv.2013.12.022
  15. Chen H, Zou Y, Zhang L, Wen Y. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat. Toxicol. 2014;154:114-120. https://doi.org/10.1016/j.aquatox.2014.05.010
  16. Hoagland DR. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 1937;347:357-359.
  17. Zhang ZL, Zhai WJ. Laboratory guide for plant physiology. Higher Education Press; 2003. p. 37-38.
  18. Chen JX, Wang XF. Laboratory guide for plant physiology. South China Univ. of Technology Press; 2002. p. 75-77.
  19. Hao JJ, Liu YJ. Plant physiology experimental technology. Liaoning Science and Technology Press; 2001. p. 178-190.
  20. Shao YF, Chen Y, Liu J, Wu PP, Ying YB, Xie J. ICP-MS determination of potential toxic elements in soil and rice (Oryza sativa L.) and related health risk. Food Anal. Method. 2016;9:3501-3508. https://doi.org/10.1007/s12161-016-0536-0
  21. Sun Z, Wu H, Tang L, Qi G, Zou R, Zhao F. Progress of research on toxic effect of Cd on wheat, maize and rice. Shandong Agr. Sci. 2009;11:86-89.
  22. Duan L, Du Y, Lu Q, Cai W, Fang Z, Liu H. Toxicity of 1-butyl- 3-methylimidazolium chloride ionic liquid to Scenedesmus obliqnus. China Environ. Sci. 2012;32:886-891.
  23. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Method. Enzymol. 1990;186:407-421.
  24. Zhou D, Chen H, Hao X, Wang Y. Fractionation of heavy metals in soils as affected by soil types and metal load quantity. Pedosphere 2002;12:309-319.
  25. Stajner D, Popovic M, Stajner M. Herbicide induced oxidative stress in lettuce, beans, pea seeds and leaves. Biol. Plantarum 2003;47:575-579.
  26. Liu H, Zhang S, Hu X, Chen C. Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings. Environ. Pollut. 2013;181:242-249. https://doi.org/10.1016/j.envpol.2013.06.007
  27. Wang L, Yu T, Xu Q, Tong B, Ma W, Wang X. Synthesis and properties of ionic liquid type surfactant. Text. Auxiliaries 2012;29:5-7.
  28. Gong L, Li Y, Wang X, Liang S, Zhu C, Han X. The influence of biosurfactant on the growth of Prorocentrum donghaiense. China Environ. Sci. 2004;24:692-696.