DOI QR코드

DOI QR Code

TNF-α Inhibitor Reduces Odontoclast Formation in Diabetes Rats with Ligature-Induced Periodontitis

  • Kim, Ji-Hye (Department of Dental Hygiene, Jeonju kijeon College) ;
  • Kim, Ae Ri (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Choi, Yun Hui (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Lee, Dong-Eun (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Woo, Gye-Hyeong (Department of Clinical Laboratory Science, Semyung University) ;
  • Bak, Eun-Jung (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Yoo, Yun-Jung (Department of Oral Biology, Yonsei University College of Dentistry)
  • Received : 2017.08.16
  • Accepted : 2017.09.13
  • Published : 2017.09.30

Abstract

To determine the effect of the tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) in odontoclast formation, we administrated a $TNF-{\alpha}$ inhibitor in rats with diabetes rats with periodontitis. The rats included in the study were divided into three groups: control rats without diabetes or periodontitis (the C group), rats with periodontitis and diabetes (the PD group), and rats with periodontitis and diabetes treated by infliximab, the TNF inhibitor (the PD+infliximab group). The PD and PD+infliximab groups received intravenous administrations of streptozotocin (STZ, 50 mg/kg) to induce diabetes. After 7 days of STZ injections, the mandibular first molars were ligatured to induce periodontitis. The PD+infliximab group was intrapenitoneally administrated by infliximab (5 mg/kg). On days 3 and 20 after the ligature administration, odontoclast formation along root surfaces was evaluated by tartrate resistant acid phosphatase (TRAP) staining and cathepsin K immunohistochemistry. On day 3, the number of TRAP- and cathepsin K-positive cells increased more so in the PD group than in the C group. The PD+infliximab group showed a lower number of positive cells than the PD group. There was no difference in all the groups on day 20. On day 3, the cathepsin-K positive multinucleated and mononucleated cells were higher in the PD group than in the C group. The number of cathepsin-K positive multinucleated cells was lower in the PD+infliximab group than in the PD group. The PD group showed more cathepsin K-positive cells in the furcation and distal surfaces than the c group. The Cathepsin K-positive cells of the PD+infliximab group were lower than that of the PD group in furcation. These results suggest that $TNF-{\alpha}$ stimulates odontoclast formation in diabetes with periodontitis.

Keywords

References

  1. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res 2015;2015:615486. doi:10.1155/2015/615486.
  2. Harvey BL, Zander HA. Root surface resorption of periodontally diseased teeth. Oral Surg Oral Med Oral Pathol 1959;12:1439-1443. doi:10.1016/0030-4220(59)90264-6.
  3. Rodriguez-Pato RB. Root resorption in chronic periodontitis: a morphometrical study. J Periodontol 2004;75:1027-1032. doi:10.1902/jop.2004.75.7.1027.
  4. Crespo Abelleira AC, Rodriguez Cobos MA, Fuentes Boquete IM, Castano Oreja MT, Jorge Barreiro FJ, Rodriguez Pato RB. Morphological study of root surfaces in teeth with adult periodontitis. J Periodontol 1999;70:1283-1291. doi:10.1902/jop.1999.70.11.1283.
  5. Kamat M, Puranik R, Vanaki S, Kamat S. An insight into the regulatory mechanisms of cells involved in resorption of dental hard tissues. J Oral Maxillofac Pathol 2013;17:228-233. doi:10.4103/0973-029X.119736.
  6. Sahara N, Toyoki A, Ashizawa Y, Deguchi T, Suzuki K. Cytodifferentiation of the odontoclast prior to the shedding of human deciduous teeth: an ultrastructural and cytochemical study. Anat Rec 1996;244:33-49. doi:10.1002/(SICI)1097-0185(199601)244:1<33::AID-AR4>3.0.CO;2-G.
  7. Sasaki T. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech 2003;61:483-495. doi:10.1002/jemt.10370.
  8. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 2013;92:860-867. doi:10.1177/0022034513500306.
  9. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000;15:2-12. doi:10.1359/jbmr.2000.15.1.2.
  10. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20:345-357. doi:10.1210/edrv.20.3.0367.
  11. Iglesias-Linares A, Hartsfield JK, Jr. Cellular and molecular pathways leading to external root resorption. J Dent Res 2017;96:145-152. doi:10.1177/0022034516677539.
  12. Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007;49:1-12. doi:10.2334/josnusd.49.1.
  13. Oshiro T, Shibasaki Y, Martin TJ, Sasaki T. Immunolocalization of vacuolar-type H+-ATPase, cathepsin K, matrix metalloproteinase-9, and receptor activator of $NF{\kappa}B$ ligand in odontoclasts during physiological root resorption of human deciduous teeth. Anat Rec 2001;264:305-311. doi:10.1002/ar.1127.
  14. Lossdorfer S, Gotz W, Jager A. Immunohistochemical localization of receptor activator of nuclear factor kappaB (RANK) and its ligand (RANKL) in human deciduous teeth. Calcif Tissue Int 2002;71:45-52. doi:10.1007/s00223-001-2086-7.
  15. Hasegawa T, Kikuiri T, Takeyama S, Yoshimura Y, Mitome M, Oguchi H, Shirakawa T. Human periodontal ligament cells derived from deciduous teeth induce osteoclastogenesis in vitro. Tissue Cell 2002;34:44-51. doi:10.1054/tice.2002.0223.
  16. Fukushima H, Kajiya H, Takada K, Okamoto F, Okabe K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci 2003;111:346-352. doi:10.1034/j.1600-0722.2003.00051.x.
  17. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, Goncalves RB, Valverde P, Dibart S, Li YP, Miranda LA, Ernst CW, Izumi Y, Taubman MA. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 2006;169:987-998. doi:10.2353/ajpath.2006.060180.
  18. Pacios S, Xiao W, Mattos M, Lim J, Tarapore RS, Alsadun S, Yu B, Wang CY, Graves DT. Osteoblast lineage cells play an essential role in periodontal bone loss through activation of nuclear factor-kappa B. Sci Rep 2015;5:16694. doi:10.1038/srep16694.
  19. Wada N, Maeda H, Yoshimine Y, Akamine A. Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 2004;35:629-635. doi:10.1016/j.bone.2004.04.023.
  20. Sojod B, Chateau D, Mueller CG, Babajko S, Berdal A, Lezot F, Castaneda B. RANK/RANKL/OPG signalization implication in periodontitis: new evidence from a RANK transgenic mouse model. Front Physiol 2017;8:338. doi:10.3389/fphys.2017.00338.
  21. Liu Y, Du H, Wang Y, Liu M, Deng S, Fan L, Zhang L, Sun Y, Zhang Q. Osteoprotegerin-knockout mice developed early onset root resorption. J Endod 2016;42:1516-1522. doi: 10.1016/j.joen.2016.07.008.
  22. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier; 2015.
  23. Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-${\alpha}$ on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res 2016;51:549-566. doi:10.1111/jre.12339.
  24. Matsumoto Y, Sringkarnboriboon S, Ono T. Proinflammatory mediators related to orthodontically induced periapical root resorption in rat mandibular molars. Eur J Orthod 2017; doi:10.1093/ejo/cjx033. doi:10.1093/ejo/cjx033.
  25. He D, Kou X, Luo Q, Yang R, Liu D, Wang X, Song Y, Cao H, Zeng M, Gan Y, Zhou Y. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res 2015;94:129-139. doi:10.1177/0022034514553817.
  26. Jiang ZL, Cui YQ, Gao R, Li Y, Fu ZC, Zhang B, Guan CC. Study of $TNF-{\alpha}$, IL-$1{\beta}$ and LPS levels in the gingival crevicular fluid of a rat model of diabetes mellitus and periodontitis. Dis Markers 2013;34:295-304. doi:10.3233/DMA-130974.
  27. Kim JH, Lee DE, Woo GH, Cha JH, Bak EJ, Yoo YJ. Osteocytic sclerostin expression in alveolar bone in rats with diabetes mellitus and ligature-induced periodontitis. J Periodontol 2015;86:1005-1011. doi:10.1902/jop.2015.150083.
  28. Blumer MJ, Hausott B, Schwarzer C, Hayman AR, Stempel J, Fritsch H. Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mech Dev 2012;129:162-176. doi:10.1016/j.mod.2012.04.003.
  29. Kim JH, Lee DE, Park JC, Kim YJ, Cha JH, Bak EJ, Yoo YJ. Root resorption in streptozotocin-induced diabetic rats with ligature-induced periodontitis. Int J Oral Biol 2015;40:111-116. doi:10.11620/IJOB.2015.40.3.111.
  30. Domon T, Osanai M, Yasuda M, Seki E, Takahashi S, Yamamoto T, Wakita M. Mononuclear odontoclast participation in tooth resorption: the distribution of nuclei in human odontoclasts. Anat Rec 1997;249:449-457. doi:10.1002/(SICI) 1097-0185(199712)249:4<449::AID-AR4>3.0.CO;2-M.
  31. Lee DE, Kim JH, Shin DH, Cha JH, Bak EJ, Yoo YJ. Odontoclast and osteoclast formation in rats with ligatureinduced periodontitis. J Dent Hyg Sci 2015;15:295-300. doi:10.17135/JDHS.2015.15.3.295.
  32. Goncalves DC, Evangelista RC, da Silva RR, Santos MJ, Silva FS Jr, Aragao KS, Brito GA, Lucena HB, Leitao RC, Oria RB. Infliximab attenuates inflammatory osteolysis in a model of periodontitis in Wistar rats. Exp Biol Med 2014;239:442-53. doi: 10.1177/1535370213520114.
  33. Breivik T, Gundersen Y, Gjermo P, Opstad PK. Chronic treatment with the glucocorticoid receptor antagonist RU486 inhibits diabetes-induced enhancement of experimental periodontitis. J Periodontal Res 2014;49:36-44. doi:10.1111/jre.12076.
  34. Zhang Q, Guo R, Schwarz EM, Boyce BF, Xing L. TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood. Arthritis Res Ther 2008;10:R37. doi:10.1186/ar2391.
  35. Kindle L, Rothe L, Kriss M, Osdoby P, Collin-Osdoby P. Human microvascular endothelial cell activation by IL-1 and $TNF-{\alpha}$ stimulates the adhesion and transendothelial migration of circulating human $CD14^{+}$ monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res 2006;21:193-206. doi:10.1359/JBMR.051027.
  36. Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, Wei S, Takeshita S, Novack DV, Silva MJ, Abu-Amer Y, Ross FP, Teitelbaum SL. Marrow stromal cells and osteoclast precursors differentially contribute to $TNF-{\alpha}$-induced osteoclastogenesis in vivo. J Immunol 2004;173:4838-4846. doi:10.4049/jimmunol.173.8.4838.
  37. Yongchaitrakul T, Lertsirirangson K, Pavasant P. Human periodontal ligament cells secrete macrophage colonystimulating factor in response to tumor necrosis factor-alpha in vitro. J Periodontol 2006;77:955-962. doi:10.1902/jop.2006.050338.