DOI QR코드

DOI QR Code

Effect of Design variables of Rail Surface Measuring Device on Acoustic Roughness and Spectral Analysis

레일표면 측정장치의 설계변수가 음향조도 스펙트럼 분석에 미치는 영향

  • Jeong, Wootae (Korea Railroad Research Institute, Transportation Environmental Research Team) ;
  • Jeon, Seungwoo (Korea Railroad Research Institute, Transportation Environmental Research Team) ;
  • Jeong, Dahae (Department of Robotics & Virtual Engineering, University of Science & Technology) ;
  • Choi, Han Shin (Department of Mechanical Engineering, Yonsei University)
  • Received : 2017.06.01
  • Accepted : 2017.07.28
  • Published : 2017.08.31

Abstract

Spectrum level for the acoustic roughness of wheels and rail surface should be periodically maintained under the limitation of ISO to reduce rolling noise of railway vehicles. Thus, in maintaining railway track, displacement sensor-based measuring devices are broadly used to measure the surface roughness and to perform spectral analysis. However, these measuring devices cause unexpected measuring errors since the displacement sensors are fixed at moving platforms and the main frame produces pitching motion during measurement. To increase the accuracy of the measured values, this paper has investigated the effects of design variables such as wheel base, additional wheels, and elastic deformation of wheels on the surface roughness and acoustic roughness spectrum.

철도차량의 전동소음(Rolling noise)을 줄이기 위해서는 차륜과 레일의 음향조도(Acoustic roughness)가 국제규격에서 규정하는 일정값 이하로 관리되어야 한다. 이러한 음향조도의 관리를 위해서 사용되는 측정장치는 접촉식 변위센서를 주로 사용하게 되는데, 주행 중인 장치에서는 센서가 고정된 플랫폼의 위치가 가변적이고 레일면과 구동륜의 접촉시에 프레임의 피칭(Pitching)운동에 의해서 측정값의 오차가 발생하는 단점이 있다. 본 연구에서는 접촉식 변위센서를 통해 측정된 데이터의 정확도를 높이기 위해서, 플랫폼의 휠베이스, 바퀴의 개수 및 바퀴의 탄성접촉 등에 의한 레일표면 측정값의 변화와 스펙트럼 변화를 해석하였으며, 각 설계변수가 음향 스펙트럼에 미치는 영향을 분석하였다.

Keywords

References

  1. W. Jeong, S. Jang, H. Koh (2015) Measuring technique for acoustic roughness of rail surface with homogeneous displacement sensors, The Korea Academia-Industrial Cooperation Society, 16(11), pp. 7941-7948. https://doi.org/10.5762/KAIS.2015.16.11.7941
  2. T. Kitagawa (2009) The influence of wheel and track parameters on rolling noise, QR of RTRI, 50(1), pp. 32-38. https://doi.org/10.2219/rtriqr.50.32
  3. S. L. Grassie (2012) Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling, Journal of Rail and Rapid Transit, 226(5), pp. 542-557. https://doi.org/10.1177/0954409712443492
  4. S.L. Grassie, M.J. Saxon, J.D. Smith (1999) Measurement of longitudinal rail irregularities and criteria for acceptable grinding, Journal of Sound and Vibration, 227(5), pp. 949-964. https://doi.org/10.1006/jsvi.1999.2980
  5. G. Desanghere, T. Vanhonacker (2007) Development and Validation of a rail surface analyse for accurate quantification and evaluation of rail corrugation and track work acceptance after acoustic grinding, Inter-Noise, Istanbul, Turkey, pp. 276-283.
  6. R. J. Diehl, P. Holm (2006) Roughness measurement - Have the necessities changed?, Journal of Sound and Vibration, 293, pp. 777-783. https://doi.org/10.1016/j.jsv.2005.08.046
  7. W. Jeong, S. Jeon, S. Jang, H. Koh (2015) Accuracy improvement in measuring rail surface roughness with multiple displacement sensors, Proc. of Conference on Institute of Control, Robotics and Systems, Daejeon, pp. 87-88.
  8. S. Jang and J. Ryue (2013) Study on the rolling noise model using an analysis of wheel and rail vibration characteristics, Journal of the Korean Society for Railway, 16(3), pp. 175-182. https://doi.org/10.7782/JKSR.2013.16.3.175
  9. J.W. Park, D.Y. Sung, Y.G. Park (2017) Correlation analysis between dynamic wheel-rail force and rail grinding, Journal of the Korean Society for Railway, 20(2), pp. 234-240. https://doi.org/10.7782/JKSR.2017.20.2.234
  10. H. Tanaka and A. Shimizu (2016) Practical application of portable trolley for the continuous measurement of rail surface roughness for rail corrugation maintenance, QR of RTRI, 57(2), pp. 118-124. https://doi.org/10.2219/rtriqr.57.2_118