DOI QR코드

DOI QR Code

LAURENT PHENOMENON FOR LANDAU-GINZBURG MODELS OF COMPLETE INTERSECTIONS IN GRASSMANNIANS OF PLANES

  • Received : 2016.08.17
  • Accepted : 2016.12.26
  • Published : 2017.09.30

Abstract

In a spirit of Givental's constructions Batyrev, Ciocan-Fontanine, Kim, and van Straten suggested Landau-Ginzburg models for smooth Fano complete intersections in Grassmannians and partial flag varieties as certain complete intersections in complex tori equipped with special functions called superpotentials. We provide a particular algorithm for constructing birational isomorphisms of these models for complete intersections in Grassmannians of planes with complex tori. In this case the superpotentials are given by Laurent polynomials. We study Givental's integrals for Landau-Ginzburg models suggested by Batyrev, Ciocan-Fontanine, Kim, and van Straten and show that they are periods for pencils of fibers of maps provided by Laurent polynomials we obtain. The algorithm we provide after minor modifications can be applied in a more general context.

Keywords

Acknowledgement

Supported by : Russian Science Foundation

References

  1. L. Aizenberg, A. Tsikh, and A. Yuzhakov, Higher-dimensional residues and their applications, Current problems in mathematics, Fundamental directions, Vol. 8, 5-64, 274, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985.
  2. V. V. Batyrev, Toric degenerations of Fano varieties and constructing mirror manifolds, The Fano conference, pp. 109-122, Univ. Torino, Turin, 2004.
  3. V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, Conifold transitions and mirror symmetry for Calabi{Yau complete intersections in Grassmannians, Nucl. Phys. B 514 (1998), no. 3, 640-666. https://doi.org/10.1016/S0550-3213(98)00020-0
  4. V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, Mirror symmetry and toric degenerations of partial ag manifolds, Acta Math. 184 (2000), no. 1, 1-39. https://doi.org/10.1007/BF02392780
  5. A. Bertram, I. Ciocan-Fontanine, and B. Kim, Two Proofs of a Conjecture of Hori and Vafa, Duke Math. J. 126 (2005), no. 1, 101-136. https://doi.org/10.1215/S0012-7094-04-12613-2
  6. T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Mirror Symmetry and Fano Manifolds, European Congress of Mathematics, pp. 285-300, (Krakow, 2-7 July, 2012), November 2013.
  7. T. Coates, A. Kasprzyk, and T. Prince, Four-dimensional Fano toric complete intersections, Proc. R. Soc. A 471 (2015), 20140704.
  8. D. Cox, J. Little, and H. Schenck, Toric varieties, Graduate Studies in Mathematics 124. Providence, RI: AMS, 2011.
  9. O. Debarre, A. Iliev, and L. Manivel, On the period map for prime Fano threefolds of degree 10, J. Algebr. Geom. 21 (2012), no. 1, 21-59. https://doi.org/10.1090/S1056-3911-2011-00594-8
  10. O. Debarre, A. Iliev, and L. Manivel, Special prime Fano fourfolds of degree 10 and index 2, Recent advances in algebraic geometry. A volume in honor of Rob Lazarsfelds 60th birthday. Cambridge: CUP. LMS Lecture Note Series 417 (2014), 123-155.
  11. C. Doran and A. Harder, Toric Degenerations and the Laurent polynomials related to Givental's Landau-Ginzburg models, Canad. J. Math. 68 (2016), no. 4, 784-815. https://doi.org/10.4153/CJM-2015-049-2
  12. C. Doran, A. Harder, L. Katzarkov, J. Lewis, and V. Przyjalkowski, Modularity of Fano threefolds, in preparation.
  13. T. Eguchi, K. Hori, and C.-Sh. Xiong, Gravitational quantum cohomology, Internat. J. Modern Phys. A 12 (1997), no. 9, 1743-1782. https://doi.org/10.1142/S0217751X97001146
  14. S. Galkin, Small toric degenerations of Fano 3-folds, preprint, http://www.mi.ras.ru/-galkin/work/3a.pdf.
  15. A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, Topics in singularity theory, 103-115, Amer. Math. Soc. Transl. Ser. 2, 180, AMS, Providence, RI, 1997.
  16. A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), 141-175, Progr. Math., 160, Birkhauser Boston, Boston, MA, 1998.
  17. S. O. Gorchinskiy and D. V. Osipov, A higher-dimensional Contou-Carrere symbol: local theory, Sbornik: Math. 206 (2015), no. 9, 1191-1259. https://doi.org/10.1070/SM2015v206n09ABEH004494
  18. S. O. Gorchinskiy and D. V. Osipov, Continuous homomorphisms between algebras of iterated Laurent series over a ring, Proc. Steklov Inst. Math. 294 (2016), 47-66. https://doi.org/10.1134/S0081543816060031
  19. S. O. Gorchinskiy and D. V. Osipov, Higher-dimensional Contou-Carrere symbol and continuous automorphisms, Funct. Anal. Its Appl. 50 (2016), 268-280. https://doi.org/10.1007/s10688-016-0158-8
  20. M. Gross, L. Katzarkov, and H. Ruddat, Towards mirror symmetry for varieties of general type, Adv. Math. 308 (2017), 208-275. https://doi.org/10.1016/j.aim.2016.03.035
  21. K. Hori and C. Vafa, Mirror symmetry, arXiv:hep-th/0002222.
  22. N. Ilten, J. Lewis, and V. Przyjalkowski, Toric degenerations of fano threefolds giving weak Landau-Ginzburg models, J. Algebra 374 (2013), 104-121. https://doi.org/10.1016/j.jalgebra.2012.11.002
  23. V. Iskovskikh and Yu. Prokhorov, Fano varieties, Encyclopaedia of Mathematical Sciences, 47 (1999) Springer, Berlin.
  24. L. Katzarkov and V. Przyjalkowski, Landau-Ginzburg models-old and new, Proceedings of the Gokova Geometry-Topology Conference 2011, 97-124, Int. Press, Somerville, MA, 2012.
  25. B. Kim, Quantum hyperplane section principle for concavex decomposable vector bundles, J. Korean Math. Soc. 37 (2000), no. 3, 455-461.
  26. M. Kontsevich, Homological algebra of mirror symmetry, Proc. International Congress of Matematicians, Vol. 1,2 (Zurich 1994), pp. 120-139, Birkhauzer, Basel, 1995.
  27. A. Kuznetsov, On Kuchle varieties with Picard number greater than 1, Izv. Math. 79 (2015), no. 4, 698-709. https://doi.org/10.1070/IM2015v079n04ABEH002758
  28. A. Kuznetsov, Kuchle fivefolds of type c5, Math. Z. 284 (2016), no. 3-4, 1245-1278. https://doi.org/10.1007/s00209-016-1707-9
  29. Y. Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001), no. 1, 121-149. https://doi.org/10.1007/s002220100145
  30. Zh. Li, On the birationality of complete intersections associated to nef-partitions, arXiv:1310.2310.
  31. Yu. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Colloquium Publications. American Mathematical Society (AMS), 47. Providence, RI: American Mathematical Society (AMS), 1999.
  32. R. Marsh and K. Rietsch, The B-model connection and mirror symmetry for Grassmannians, arXiv:1307.1085.
  33. T. Prince, Efficiently computing torus charts in Landau{Ginzburg models of complete intersections in Grassmannians of planes, Bull. Korean Math. Soc. 54 (2017), no. 5, 1719-1724. https://doi.org/10.4134/BKMS.B160688
  34. V. Przyjalkowski, On Landau-Ginzburg models for Fano varieties, Comm. Num. Th. Phys. 1 (2008), no. 4, 713-728. https://doi.org/10.4310/CNTP.2007.v1.n4.a4
  35. V. Przyjalkowski, Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models, Cent. Eur. J. Math. 9 (2011), no. 5, 972-977. https://doi.org/10.2478/s11533-011-0070-7
  36. V. Przyjalkowski, Weak Landau-Ginzburg models for smooth Fano threefolds, Izv. Math. 77 (2013), no. 4, 135-160.
  37. V. Przyjalkowski, Calabi-Yau compacti cations of toric Landau-Ginzburg models for smooth Fano threefolds, Sb. Math. 208 (2017), no. 7, DOI:10.1070/SM8838.
  38. V. Przyjalkowski, On Calabi-Yau compactifications of toric Landau-Ginzburg models for Fano complete intersections, Math. Notes 102 (2018), arXiv:1701.08532.
  39. V. Przyjalkowski and C. Shramov, Laurent phenomenon for Landau-Ginzburg models of complete intersections in Grassmannians of planes, arXiv:1409.3729. https://doi.org/10.4134/BKMS.B160678
  40. V. Przyjalkowski and C. Shramov, On weak Landau-Ginzburg models for complete intersections in Grassmannians, Russian Math. Surveys 69 (2014), no. 6, 1129-1131. https://doi.org/10.1070/RM2014v069n06ABEH004931
  41. V. Przyjalkowski and C. Shramov, On Hodge numbers of complete intersections and Landau-Ginzburg models, Int. Math. Res. Not. 2015 (2015), no. 21, 11302-11332. https://doi.org/10.1093/imrn/rnv024
  42. V. Przyjalkowski and C. Shramov, Laurent phenomenon for Landau-Ginzburg models of complete intersections in Grassmannians, Proc. Steklov Inst. Math. 290 (2015), no. 1, 91-102. https://doi.org/10.1134/S0081543815060097
  43. B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Wien, Springer-Verlag, 1993.

Cited by

  1. Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds vol.208, pp.7, 2017, https://doi.org/10.1070/SM8838