CYLINDERS IN DEL PEZZO SURFACES WITH DU VAL SINGULARITIES

Grigory Belousov

Abstract. We consider del Pezzo surfaces with du Val singularities. We'll prove that a del Pezzo surface X with du Val singularities has a $-K_X$-polar cylinder if and only if there exist tiger such that the support of this tiger does not contain anti-canonical divisor. Also we classify all del Pezzo surfaces X such that X has not any cylinders.

1. Introduction

A log del Pezzo surface is a projective algebraic surface X with only quotient singularities and ample anti-canonical divisor $-K_X$. In this paper we assume that X has only du Val singularities and we work over complex number field \mathbb{C}. Note that a del Pezzo surface with only du Val singularities is rational.

Definition 1.1. Let X be a proper normal variety. Let D be an effective \mathbb{Q}-divisor on X such that $D \equiv -K_X$ and the pair (X,D) is not log canonical. Such divisor D is called non-log canonical special tiger (see [4]).

Remark 1.2. In this paper, a non-log canonical special tiger we will call a tiger.

Definition 1.3 (see. [5]). Let M be a \mathbb{Q}-divisor on a projective normal variety X. An M-polar cylinder in X is an open subset $U = X \setminus \text{Supp}(D)$ defined by an effective \mathbb{Q}-divisor D in the \mathbb{Q}-linear equivalence class of M such that $U \cong Z \times \mathbb{A}^1$ for some affine variety Z.

In this paper, we consider del Pezzo surfaces with du Val singularities over complex number field \mathbb{C}. Our interest is a connection between existence of a $-K_X$-polar cylinder in the del Pezzo surface and tigers on this surface.

The existence of a H-polar cylinder in X is important due to the following fact.

Theorem 1.4 (see [6], Corollary 3.2). Let Y be a normal algebraic variety over \mathbb{C} projective over an affine variety S with $\dim S \geq 1$. Let $H \in \text{Div}(Y)$ be an ample divisor on Y, and let $V = \text{Spec} A(Y,H)$ be the associated affine
quasicone over Y. Then V admits an effective G_a-action if and only if Y contains an H-polar cylinder.

There exists a classification of del Pezzo surfaces X such that X has a $-K_X$-polar cylinder (see [1], [2]). Also, in the papers [1], [2] the authors have proved that if a del Pezzo surface X has not $-K_X$-polar cylinder, then all tigers contain a support at least one element of $|-K_X|$. Now we prove the inverse statement.

The main result of Section 3 is the followings.

Theorem 1.5. Let X be a del Pezzo surface with du Val singularities. Then X has a $-K_X$-polar cylinder if and only if there exist a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

The main result of Section 4 is the followings.

Theorem 1.6. Let X be a del Pezzo surface with du Val singularities. Then

- X has not cylinders if $\rho(X) = 1$ and X has one of the followings collections of singularities: $4A_2, 2A_1 + 2A_3, 2D_4$;
- In the rest cases there exist an ample divisor H such that X has a H-polarization.

The author is grateful to professor I. A. Cheltsov for suggesting me this problem and for his help.

2. Preliminary results

We work over complex number field \mathbb{C}. We employ the following notation:

- $(-n)$-curve is a smooth rational curve with self intersection number $-n$.
- K_X: the canonical divisor on X.
- $\rho(X)$: the Picard number of X.

Theorem 2.7 (Riemann–Roch, see, for example, [3], Theorem 1.6, Ch. 5). Let D be a divisor on the surface X. Then

$$\chi(D) = \frac{1}{2} D(D - K_X) + \chi(\mathcal{O}_X).$$

Theorem 2.8 (Kawamata–Viehweg Vanishing Theorem, see, for example, [7], Theorem 5-2-3). Let X be a non-singular projective variety, A an ample \mathbb{Q}-divisor such that the fractional part $[A]$ of A has the support with only normal crossings. Then

$$H^p(X, K_X + [A]) = 0, \quad p > 0.$$

Let X be a del Pezzo surface with du Val singularities. Let d be the degree of X, i.e., $d = K_X^2$.

Theorem 2.9 (see [1], Theorem 1.5). Let X be a del Pezzo surface of degree d with at most du Val singularities.

1. The surface X does not admit a $-K_X$-polar cylinder when
(1) \(d = 1 \) and \(X \) allows only singular points of types \(A_1, A_2, A_3, D_4 \) if any.

(2) \(d = 2 \) and \(X \) allows only singular points of types \(A_1 \) if any.

(3) \(d = 3 \) and \(X \) allows no singular point.

II. The surface \(X \) has a \(-K_X \)-polar cylinder if it is not one of the del Pezzo surfaces listed in I.

3. The proof of Theorem 1.5

In the papers [1] and [2] authors have classified del Pezzo surfaces \(X \) such that \(X \) has a \(-K_X \)-polar cylinder. Moreover, they prove that if a del Pezzo surface \(X \) has not a \(-K_X \)-polar cylinder, then every tiger on \(X \) contains an element of \(| -K_X | \). So, we need prove that if a del Pezzo surface \(X \) has a \(-K_X \)-polar cylinder, then there exist a tiger such that the support of this tiger does not contain any elements of \(| -K_X | \).

Lemma 3.10. Let \(X \) be a del Pezzo surface with du Val singularities and let \(d \) be the degree of \(X \). Assume that \(d \geq 7 \). Then \(X \) has a \(-K_X \)-polar cylinder and there exist a tiger such that the support of this tiger does not contain any elements of \(| -K_X | \).

Proof. By Theorem 2.9, we see that \(X \) has a \(-K_X \)-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of \(| -K_X | \). Consider \(| -2K_X | \). By Theorem 2.7 and Theorem 2.8, \(\dim | -2K_X | = -2(K_X \cdot -2K_X - K_X) = 3d \). Let \(P \) be an arbitrary smooth point on \(X \). Consider a set \(\Omega \) of elements \(L \in | -2K_X | \) such that \(\mult_P L \geq 5 \). Then \(\Omega \) is a linear subsystem of the linear system \(| -2K_X | \). Note that \(\dim \Omega = 3d - 15 \geq 6 \) for \(d \geq 7 \). Hence, \(\Omega \) is not empty. Let \(N \in \Omega \) be a general element of the linear system \(\Omega \).

Note that \(N \) does not contain a support of anti-canonical divisor. Indeed, assume that there exist an element \(M_1 \in | -K_X | \) such that \(\text{Supp} M_1 \subseteq \text{Supp} N \). Then \(N = M_1 + M_2 \), where \(M_2 \in | -K_X | \). We see that \(\dim | -K_X | = -K_X \cdot (-K_X - K_X) = d \). Therefore, \(\mult_P M_1 \leq 3 \) and \(\mult_P M_2 \leq 3 \). Hence, we may assume that \(\mult_P M_1 = 2 \), \(\mult_P M_2 = 3 \). Let \(\tilde{M}_1 \) be the linear subsystem of \(| -K_X | \) such that \(\tilde{M}_1 \) consist of elements with multiply two in the point \(P \). Let \(\tilde{M}_2 \) be the linear subsystem of \(| -K_X | \) such that \(\tilde{M}_2 \) consist of elements with multiply three in the point \(P \). Then

\[
\dim | \tilde{M}_1 + \tilde{M}_2 | = \dim | \tilde{M}_1 | + \dim | \tilde{M}_2 | = (d - 3) + (d - 6) = 2d - 9.
\]

Note that \(3d - 15 > 2d - 9 \) for \(d \geq 7 \). Hence, a general element \(N \) of the linear system \(\Omega \) does not contain a support of anti-canonical divisor. Then \(\frac{1}{2} N \) is a tiger such that the support of this tiger does not contain any elements of \(| -K_X | \).

4. Lemma 3.11. Let \(X \) be a del Pezzo surface with du Val singularities and let \(d \) be the degree of \(X \). Assume that \(d = 4, 6 \). Then \(X \) has a \(-K_X \)-polar cylinder.
and there exists a tiger such that the support of this tiger does not contain any elements of $| - K_X |$.

Proof. By Theorem 2.9, we see that X has a $-K_X$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $| - K_X |$. Let $f : \tilde{X} \to X$ be the minimal resolution. Let E be a (-1)-curve on X and $E' = f(E)$. Put $-3K_{\tilde{X}} \sim 2E + F$. Then $-3K_{\tilde{X}} \cdot E = 2E^2 + F \cdot E$. Since $K_{\tilde{X}} \cdot E = -1$ and $E^2 = -1$, we see that $F \cdot E = 5$. We have $-3K_{\tilde{X}}^2 = 2E \cdot K_{\tilde{X}} + F \cdot K_{\tilde{X}}$. Since $K_{\tilde{X}} \cdot E = -1$ and $K_{\tilde{X}}^2 = d$, we see that $F \cdot K_{\tilde{X}} = -(3d - 2)$. We obtain $-3K_{\tilde{X}} \cdot F = 2E \cdot F + F^2$. Since $F \cdot E = 5$ and $F \cdot K_{\tilde{X}} = -(3d - 2)$ we see that $F^2 = 9d - 16$. Hence, by Theorem 2.7 and Theorem 2.8, $\dim | F | = 6d - 9$. Let P' be a general smooth point on E' and $P = f(P)$. Consider a set Ω of elements $L \in | F |$ such that $\mult_P L \geq 5$. Note that $\dim | \Omega | = 6d - 9 - 15 = 6d - 24 \geq 0$ for $d \geq 4$, i.e., Ω is non-empty. We see that Ω contains an element N such that $N + E$ does not contain a support of anti-canonical divisor. Indeed, assume that for all $N \in \Omega$ there exist $M_1 \in | - K_X |$ such that $\Supp M_1 \subseteq \Supp(N + E)$. Then $N + 2E = M_1 + M_2$, where $M_2 \in | - 2K_X |$. We have the following cases.

Case 1. $M_1 = 2E + F_1, M_2$ does not contain the curve E. Hence, $F_1 \cdot E = 3, F_1 \cdot K_X = -(d - 2), F_1^2 = d - 8 \leq -2$, a contradiction.

Case 2. $M_1 = E + F_1, M_2 = E + F_2$. Then $F_1 \cdot E = 2, F_1 \cdot K_X = -(d - 1), F_1^2 = d - 3, F_2 \cdot E = 3, F_2 \cdot K_X = -(2d - 1), F_2^2 = 4d - 5$. Hence, $\dim | F_1 | = d - 2$, $\dim | F_2 | = 3d - 3$. Note that the multiplicities F_1 and F_2 in the point P are equaled 2 and 3 correspondingly. Let \tilde{F}_1 be the linear subsystem of $| F_1 |$ such that the multiplicity of elements of \tilde{F}_1 is equaled two in the point P, let \tilde{F}_2 be the linear subsystem of $| F_2 |$ such that the multiplicity of elements of \tilde{F}_2 is equaled three in the point P. Then $\dim | \tilde{F}_1 | = d - 5$. Hence, $d = 6$. Note that

$$\dim | \tilde{F}_1 + \tilde{F}_2 | = \dim | \tilde{F}_1 | + \dim | \tilde{F}_2 | = (d - 5) + (3d - 9) = 4d - 14 = 10.$$

On the other hand, $\dim | \Omega | = 6d - 24 = 12 > 10$. Therefore, a general element $N \in \Omega$ does not contain $\Supp(-K_X) \setminus \Supp(E)$.

Case 3. $M_2 = 2E + F_2, M_1$ does not contain the curve E. Then $F_2 \cdot E = 4, F_2 \cdot K_X = -(2d - 2), F_2^2 = 4d - 12$. Hence, $\dim | F_2 | = 3d - 7, \dim | M_1 | = d$. Note that the multiplicities M_1 and F_2 in the point P are equal to 1 and 4 correspondingly. Let \tilde{M}_1 be the set of elements of the linear system $| - K_X |$ that pass through the point P, let \tilde{F}_2 be the set of elements of the linear system $| F_2 |$ that have multiplicity four in the point P. Note that \tilde{F}_1 and \tilde{M}_2 are the linear system. Then $\dim | \tilde{F}_2 | = 3d - 17$. Hence, $d = 6$. Note that

$$\dim | \tilde{M}_1 + \tilde{F}_2 | = \dim | \tilde{M}_1 | + \dim | \tilde{F}_2 | = (d - 1) + (3d - 17) = 4d - 18 = 6.$$

On the other hand, $\dim | \Omega | = 6d - 24 = 12 > 6$. Therefore, a general element $N \in \Omega$ does not contain any elements of $| - K_X - E |$.

So, a general element $N \in \Omega$ does not contain any elements of $| - K_X - E |$. Denote this element by N. Note that $\mult_P (2E + N) \geq 7$. Then $\frac{1}{2}f(N) + \frac{1}{2}E'$
Lemma 3.12. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d = 5$. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

Proof. By Theorem 2.9, we see that X has a $-K_X$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $|-K_X|$. Consider $|-4K_X|$. By Theorem 2.7 and Theorem 2.8, we see that $\dim |-4K_X| = 50$. Let P be an arbitrary smooth point on X. Consider a set Ω of elements $L \in |-4K_X|$ such that $\text{mult}_P L \geq 9$. Then Ω is the linear subsystem of the linear system of $|-4K_X|$. Note that $\dim |\Omega| = 50 - 45 = 5$. Hence, Ω is non-empty. Let $N \in \Omega$ be a general element of the linear system Ω. We see that N does not contain a support of anti-canonical divisor. Indeed, assume that there exists an element $M_1 \in |-K_X|$ such that $\text{Supp} M_1 \subseteq \text{Supp} N$. Then $N = M_1 + M_2$, where $M_2 \in |-3K_X|$. Note that $\dim |-K_X| = 5$, $\dim |-3K_X| = 30$. Put $d_1 = \text{mult}_P M_1$ and $d_2 = \text{mult}_P M_2$. Since

$$\dim |-K_X| - \frac{d_1 \cdot (d_1 + 1)}{2} = 5 - \frac{d_1 \cdot (d_1 + 1)}{2} \geq 0$$

and

$$\dim |-3K_X| - \frac{d_2 \cdot (d_2 + 1)}{2} = 30 - \frac{d_2 \cdot (d_2 + 1)}{2} \geq 0,$$

we see that $\text{mult}_P M_1 \leq 2$ and $\text{mult}_P M_1 \leq 7$. Hence, $\text{mult}_P M_1 = 2$, $\text{mult}_P M_2 = 7$. Let \tilde{M}_1 be the set of elements of the linear system $|-K_X|$ that have multiply 2 in the point P, let \tilde{M}_2 be the set of elements of the linear system $|-3K_X|$ that have multiply 7 in the point P. Note that \tilde{M}_1 and \tilde{M}_2 are the linear system. Then $\dim |\tilde{M}_1| = 5 - 3 = 2 \dim |\tilde{M}_2| = 30 - 28 = 2$. Hence,

$$\dim |\tilde{M}_1 + \tilde{M}_2| = 4 < 5 = \dim |\Omega|.$$

So, a general element N of Ω does not contain the support of anti-canonical divisor. Then $\frac{1}{2} N$ is a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

Lemma 3.13. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 3$ and there exists a singular point of type A_1. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type A_1. By Lemmas 3.10, 3.11 and 3.12 we may assume that $d = 3$. Let $f : \bar{X} \to X$ be the minimal resolution of singularities of X, and let $D = \sum_{i=1}^{g} D_i$ be the exceptional divisor of f, where D_i is a (-2)-curve. We may assume that $P = f(D_1)$. By Theorem 2.9, we see that X
has a \(-K_X\)-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\). Consider \(-4K_X\). Put \(-4K_X \sim 3D_1 + F\). Then \(F \cdot D_1 = 6\), \(F \cdot K_X = -12\), \(F^2 = 30\). Hence, \(\dim |F| = 21\). Let \(Q\) be a point on \(D_1\). Note that there exists an element \(N \in |F|\) such that \(\text{mult}_Q N = 6\). Now, we prove that \(N + D_1\) does not contain the support of anti-canonical divisor. Indeed, assume that for all \(N \in \Omega\) there exists an element \(M_1 \in |-K_X|\) such that \(\text{Supp}(M_1) \subseteq \text{Supp}(N + D_1)\). Then \(N + 3D_1 = M_1 + M_2\), where \(M_2 \in |-3K_X|\). So, we have the following four cases.

Case 1. \(M_2 = 3D_1 + F_2\), \(M_1\) does not contain the curve \(D_1\). Then \(F_2 \cdot D_1 = 6\), \(F_2 \cdot K_X = -9\), \(F_2^2 = 9\). Hence, \(\text{dim}|F_2| = 9\). Therefore, \(\text{mult}_Q F_2 \leq 3\). Since \(M_1\) does not meet \(D_1\), we have a contradiction.

Case 2. \(M_1 = D_1 + F_1\), \(M_2 = 2D_1 + F_2\). Then \(F_1 \cdot D_1 = 2\), \(F_1 \cdot K_X = -d\), \(F_2^2 = 1\). Therefore, \(\text{dim}|F_1| = 2\). Hence, \(\text{mult}_Q F_2 \leq 1\), a contradiction.

Case 3. \(M_1 = 2D_1 + F_1\), \(M_2 = D_1 + F_2\). Then \(F_1 \cdot D_1 = 4\), \(F_1 \cdot K_X = -3\), \(F_2^2 = -5\), a contradiction.

Case 4. \(M_1 = 3D_1 + F_2\), \(M_2\) does not contain the curve \(D_1\). Then \(F_1 \cdot D_1 = 6\), \(F_1 \cdot K_X = -3\), \(F_2^2 = -15\), a contradiction.

So, \(\text{Supp}(N + D_1)\) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(3D_1 + N) = 9\). Then \(\frac{1}{4} f(N)\) is a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Lemma 3.14. Let \(X\) be a del Pezzo surface with du Val singularities and let \(d\) be the degree of \(X\). Assume that \(d \geq 2\) and there exists a singular point of type \(A_2\) or \(A_3\). Then \(X\) has a \(-K_X\)-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Proof. As above, we may assume that \(d = 2\) or \(d = 3\). By Theorem 2.9, we see that \(X\) contains \(-K_X\)-polar cylinder. Let \(f : \bar{X} \to X\) be the minimal resolution of singularities of \(X\), and let \(D = \sum_{i=1}^n D_i\) be the exceptional divisor of \(f\), where \(D_i\) is a \((-2)\)-curve. Consider two cases.

Case 1. There exists a point \(P \in X\) such that \(P\) of type \(A_2\). We may assume that \(D_1\) and \(D_2\) correspond to \(P\). So, \(D_1 \cdot D_2 = 1\). Let \(Q\) be the point of intersection of \(D_1\) and \(D_2\). Consider \(-2K_X\). Put \(-2K_X \sim 2D_1 + 2D_2 + F\). Then \(F \cdot D_i = F \cdot D_j = 2\), \(F \cdot K_X = -2d\), \(F^2 = 4d = 8\). Hence, \(\dim|F| = 3d - 4\). Consider the set \(\Omega\) of elements \(L \in |F|\) such that \(Q \in L\). Then \(\dim \Omega = 3d - 4 - 1 = 3d - 5\). Put \(-K_X \sim D_1 + D_2 + \bar{F}\). Then \(\bar{F} \cdot D_i = \bar{F} \cdot D_j = 1\), \(\bar{F} \cdot K_X = -d\), \(\bar{F}^2 = -d - 2\). Hence, \(\bar{|F|} = d - 1\). Consider the set \(\bar{\Omega}\) of elements \(L \in |\bar{F}|\) such that \(Q \in L\). Then \(\dim \bar{\Omega} = d - 2\). Note that \(\dim \bar{\Omega} = 3d - 5 > \dim \Omega = d - 2\). So, there exists an element \(N \in \Omega\) such that \(f(N)\) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(2D_1 + 2D_2 + N) \geq 5\). Then \(\frac{1}{4} f(N)\) is a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Case 2. There exists a point \(P \in X\) such that \(P\) of type \(A_3\). We may assume that \(D_1\), \(D_2\) and \(D_3\) correspond to \(P\). So, \(D_1 \cdot D_2 = D_2 \cdot D_3 = 1\). Let
Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 2$ and there exists a singular point of type D_4. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $|-K_X|$. \hfill \Box

Lemma 3.15. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 2$ and there exists a singular point of type D_4. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type D_4. By Theorem 2.9, we see that X has a $-K_X$-polar cylinder. Let $f : X \rightarrow \overline{X}$ be the minimal resolution of singularities of X, and let $\mathcal{D} = \sum_{i=1}^{n} D_i$ be the exceptional divisor of f, where D_i is a (2)-curve. We may assume that D_1, D_2, D_3 and D_4 correspond to P. Moreover, D_1 is the central component. Put $-3K_X \sim 4D_1 + 3D_2 + 2D_3 + 2D_4 + F$. Then $F \cdot D_1 = 1$, $F \cdot D_2 = 2$, $F \cdot D_3 = 0$ $F \cdot D_4 = 0$ $F \cdot K_X = -3d$, $F^2 = 2d - 3 > 0$ for $d \geq 2$. Note that $4D_1 + 3D_2 + 2D_3 + 2D_4 + F$ does not admit representation as $M_1 + M_2$, where $M_1 \in |-K_X|$ and $M_2 \in |-2K_X|$. Let N be an element of $|F|$. Note that the support $\mathcal{N} = 4D_1 + 3D_2 + 2D_3 + 2D_4$ does not contain any elements of $|-K_X|$. So, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult$_f(2D_1 + 3D_2 + D_3 + N) \geq 5$. Then $\frac{1}{2}f(N)$ is a tiger such that the support of this tiger does not contain any elements of $|-K_X|$. \hfill \Box

Lemma 3.16. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that there exists a singular point of type A_k, where $k = 4, 5, 6, 7, 8$. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $|-K_X|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type A_k. By Theorem 2.9, we see that X has a $-K_X$-polar cylinder. Let $f : X \rightarrow \overline{X}$ be the minimal resolution of singularities of X, and let $\mathcal{D} = \sum_{i=1}^{n} D_i$ be the exceptional divisor of f, where D_i is a (2)-curve. We may assume that D_1, D_2, \ldots, D_k correspond to P. Moreover, $D_i, D_{i+1} = 1$ for $i = 1, 2, \ldots, k - 1$. Consider the following cases.

Case 1. $k = 4$. Put $-2K_X \sim D_1 + 2D_2 + 2D_3 + D_4 + F$. Let Q be the intersection of D_2 and D_3. We obtain $F \cdot D_1 = F \cdot D_4 = 0$, $F \cdot D_2 = F \cdot D_3 = 1$, $F \cdot K_X = -2d$, $F^2 = 4d - 4$. Then $|F| = 3d - 2$. So, there exists an element $N \in |F|$ such that N passes through Q. Note that $D_1 + 2D_2 + 2D_3 + D_4 + N$ does not admit representation as $M_1 + M_2$, where $M_1, M_2 \in |-K_X|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult$_f(D_1 + 2D_2 + 2D_3 + D_4 + N) \geq 5$. Then $\frac{1}{2}f(N)$ is
a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Case 2. \(k = 5\). Put \(-3K_X \sim D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + F\). Let \(Q\) be the intersection of \(D_3\) and \(D_4\). We obtain \(F \cdot D_1 = F \cdot D_2 = 0, F \cdot D_5 = F \cdot D_4 = F \cdot D_3 = 1, F \cdot K_X = -3d, F^2 = 9d - 8\). Then \(\dim |F| = 6d - 4\). So, there exists an element \(N \in |F|\) such that \(N\) passes through \(Q\). Note that \(D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + N\) does not admit representation as \(M_1 + M_2\), where \(M_1 \in |-K_X|\) and \(M_2 \in |-2K_X|\). Hence, \(f(N)\) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + N) \geq 7\). Then \(\frac{1}{2}f(N)\) is a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Case 3. \(k = 6\). Put \(-3K_X \sim D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + D_6 + F\). Let \(Q\) be the intersection of \(D_3\) and \(D_4\). We obtain

\[F \cdot D_1 = F \cdot D_2 = F \cdot D_3 = F \cdot D_6 = 0,\]
\[F \cdot D_4 = F \cdot D_5 = 1, F \cdot K_X = -3d, F^2 = 9d - 6.\]

Then \(\dim |F| = 6d - 3\). So, there exists an element \(N \in |F|\) such that \(N\) passes through \(Q\). Note that \(D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + N\) does not admit representation as \(M_1 + M_2\), where \(M_1 \in |-K_X|\) and \(M_2 \in |-2K_X|\). Hence, \(f(N)\) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(D_1 + 2D_2 + 3D_3 + 3D_4 + 2D_5 + D_6 + N) \geq 7\). Then \(\frac{1}{2}f(N)\) is a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Case 4. \(k = 7\). Put

\[-4K_X \sim D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + F.\]

Let \(Q\) be the intersection of \(D_4\) and \(D_5\). We obtain

\[F \cdot D_1 = F \cdot D_2 = F \cdot D_3 = F \cdot D_6 = 0,\]
\[F \cdot D_4 = F \cdot D_5 = F \cdot D_7 = -4d, F^2 = 16d - 10.\]

Then \(\dim |F| = 10d - 5\). So, there exists an element \(N \in |F|\) such that \(N\) passes through \(Q\). Note that \(D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + N\) does not admit representation as \(M_1 + M_2\), where \(M_1 \in |-K_X|\) and \(M_2 \in |-3K_X|\). Hence, \(f(N)\) does not contain the support of anti-canonical divisor. Note that

\[\text{mult}_Q(D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + N) \geq 9.\]

Then \(\frac{1}{2}f(N)\) is a tiger such that the support of this tiger does not contain any elements of \(|-K_X|\).

Case 5. \(k = 8\). Put

\[-4K_X \sim D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + D_8 + F.\]

Let \(Q\) be the intersection of \(D_4\) and \(D_5\). We obtain

\[F \cdot D_1 = F \cdot D_2 = F \cdot D_3 = F \cdot D_6 = F \cdot D_7 = F \cdot D_8 = 0,\]
\[F \cdot D_4 = F \cdot D_5 = 1, F \cdot K_X = -4d, F^2 = 16d - 8.\]
Then \(\dim |F| = 10d - 4 \). So, there exists an element \(N \in |F| \) such that \(N \) passes through \(Q \). Note that \(D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + D_8 + N \) does not admit representation as \(M_1 + M_2 \), where \(M_1 \in | - K_X | \) and \(M_2 \in | - 3K_X | \). Hence, \(f(N) \) does not contain the support of anti-canonical divisor. Note that

\[
\text{mult}_Q(D_1 + 2D_2 + 3D_3 + 4D_4 + 4D_5 + 3D_6 + 2D_7 + D_8 + N) \geq 9.
\]

Then \(\frac{1}{2} f(N) \) is a tiger such that the support of this tiger does not contain any elements of \(| - K_X | \).

\[\square \]

Lemma 3.17. Let \(X \) be a del Pezzo surface with du Val singularities and let \(d \) be the degree of \(X \). Assume that there exists a singular point of type \(D_k \), where \(k = 5, 6, 7, 8 \). Then \(X \) has a \(-K_X \)-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of \(| - K_X | \).

Proof. Let \(X \) be a del Pezzo surface with du Val singularities, and let \(P \) be a singular point of type \(D_k \). By Theorem 2.9, we see that \(X \) has a \(-K_X \)-polar cylinder. Let \(f : \bar{X} \to X \) be the minimal resolution of singularities of \(X \), and let \(D = \sum_{i=1}^n D_i \) be the exceptional divisor of \(f \), where \(D_i \) is a \((-2)\)-curve. We may assume that \(D_1, D_2, \ldots, D_k \) correspond to \(P \). Moreover, \(D_i \) is the central component, \(D_1, D_2 \) meet only \(D_3 \), and \(D_1 \cdot D_{i+1} = 1 \) for \(i = 3, 4, \ldots, k - 1 \).

Consider the following cases.

Case 1. \(k = 5 \). Put \(-2K_X \sim 2D_1 + 2D_2 + 3D_3 + 2D_4 + D_5 + F \). Then \(F \cdot D_1 = F \cdot D_2 = 1 \), \(F \cdot D_3 = F \cdot D_4 = F \cdot D_5 = 0 \), \(F \cdot K_X = -2d \), \(F^2 = 4d - 4 \). Then \(\dim |F| = 3d - 2 \). So, there exists an element \(N \in |F| \). Note that \(2D_1 + 2D_2 + 3D_3 + 2D_4 + D_5 + N \) does not admit representation as \(M_1 + M_2 \), where \(M_1, M_2 \in | - K_X | \). Hence, \(f(N) \) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(2D_1 + 2D_2 + 3D_3 + 2D_4 + D_5 + N) \geq 5 \), where \(Q \) is the intersection of \(D_3 \) and \(D_4 \). Then \(\frac{1}{2} f(N) \) is a tiger such that the support of this tiger does not contain any elements of \(| - K_X | \).

Case 2. \(k = 6 \). Put \(-2K_X \sim 2D_1 + 2D_2 + 4D_3 + 3D_4 + 2D_5 + D_6 + F \). Then \(F \cdot D_3 = 1 \), \(F \cdot D_4 = 0 \) for \(i \neq 3 \), \(F \cdot K_X = -2d \), \(F^2 = 4d - 4 \). Then \(\dim |F| = 3d - 2 \). So, there exists an element \(N \in |F| \). Note that \(2D_1 + 2D_2 + 4D_3 + 3D_4 + 2D_5 + D_6 + N \) does not admit representation as \(M_1 + M_2 \), where \(M_1, M_2 \in | - K_X | \). Hence, \(f(N) \) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(2D_1 + 2D_2 + 4D_3 + 3D_4 + 2D_5 + D_6 + N) \geq 7 \), where \(Q \) is the intersection of \(D_3 \) and \(D_4 \). Then \(\frac{1}{2} f(N) \) is a tiger such that the support of this tiger does not contain any elements of \(| - K_X | \).

Case 3. \(k = 7 \). Put

\[-3K_X \sim 3D_1 + 3D_2 + 6D_3 + 5D_4 + 4D_5 + 3D_6 + 2D_7 + F.\]

Then \(F \cdot D_3 = F \cdot D_7 = 1 \), \(F \cdot D_i = 0 \) for \(i \neq 3, 7 \), \(F \cdot K_X = -3d \), \(F^2 = 9d - 8 \). Then \(\dim |F| = 6d - 4 \). So, there exists an element \(N \in |F| \). Note that \(3D_1 + 3D_2 + 6D_3 + 5D_4 + 4D_5 + 3D_6 + 2D_7 + N \) does not admit representation as \(M_1 + M_2 \), where \(M_1 \in | - K_X | \) and \(M_2 \in | - 2K_X | \). Hence, \(f(N) \) does not contain the support of anti-canonical divisor. Note that \(\text{mult}_Q(3D_1 + 3D_2 + \)

Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that there exists a singular point of type E_k, where $k = 6, 7, 8$. Then X has a $-K_X$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $| - K_X |$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type D_k. By Theorem 2.9, we see that X has a $-K_X$-polar cylinder. Let $f : X \to X$ be the minimal resolution of singularities of X, and let $D = \sum_{i=1}^n D_i$ be the exceptional divisor of f, where D_i is a (-2)-curve. We may assume that D_1, D_2, \ldots, D_k correspond to P. Moreover, D_k is the central component, D_1 meets only D_k, D_2 meets D_1 and D_3, D_2 meets only D_3, and $D_i \cdot D_{i+1} = 1$ for $i = 3, 4, \ldots, k - 1$. Consider the following cases.

Case 1. $k = 6$. Put $-2K_X \sim 2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + F$.

Then $f \cdot D_1 = 1$, $f \cdot D_i = 0$ for $i \geq 2$, $f \cdot K_X = -2d$, $F^2 = 4d - 2$. Then dim $| F | = 3d - 1$. So, there exists an element $N \in | F |$. Note that $2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + N$ does not admit representation as $M_1 + M_2$, where $M_1, M_2 \in | - K_X |$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult$_Q(2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + N) \geq 5$, where Q is the intersection of D_4 and D_5. Then $\frac{1}{2}f(N)$ is a tiger such that the support of this tiger does not contain any elements of $| - K_X |$.

Case 2. $k = 7$. Put $-2K_X \sim 2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + F$.

Then $f \cdot D_2 = 1$, $f \cdot D_i = 0$ for $i \neq 2$, $f \cdot K_X = -2d$, $F^2 = 4d - 2$. Then dim $| F | = 3d - 1$. So, there exists an element $N \in | F |$. Note that $2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + N$ does not admit representation as $M_1 + M_2$, where $M_1, M_2 \in | - K_X |$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult$_Q(2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + N) \geq 7$, where Q is the intersection of D_4 and D_5. Then $\frac{1}{2}f(N)$
is a tiger such that the support of this tiger does not contain any elements of $|−K_X|$.

Case 3. $k = 8$. Put

$$-2K_{\bar{X}} \sim 3D_1 + 2D_2 + 4D_3 + 6D_4 + 5D_6 + 4D_7 + 2D_8 + F.$$

Then $F \cdot D_i = 1$, $F \cdot D = 0$ for $i \neq 8$, $F \cdot K_{\bar{X}} = -2d$, $F^2 = 4d^2 - 2$. Then $\dim |F| = 3d - 1$. So, there exists an element $N \in |F|$. Note that $3D_1 + 2D_2 + 4D_3 + 6D_4 + 5D_6 + 4D_7 + 2D_8 + N$ does not admit representation as $M_1 + M_2$, where $M_1, M_2 \in |−K_{\bar{X}}|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that $mult_Q(2D_1 + 2D_2 + 3D_3 + 4D_4 + 3D_5 + 2D_6 + D_7 + N) \geq 7$, where Q is the intersection of D_4 and D_5. Then $\frac{1}{2}f(N)$ is a tiger such that the support of this tiger does not contain any elements of $|−K_X|$. □

So, Theorem 1.5 follows from Lemmas 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18.

4. The proof of theorem 1.6

Assume that $\rho(X) = 1$. Then X has a H-polar cylinder if and only if X has a $−K_X$-polar cylinder, where H is an arbitrary ample divisor. On the other hand, there exists a classification of del Pezzo surfaces X such that X has a $−K_X$-polar cylinder (see [1]). By a classification of a del Pezzo surface X has not cylinders if X has one of the following collections of singularities: $4A_2, 2A_1 + 2A_3, 2D_4$. So, we may assume that $\rho(X) > 1$.

Let $f : \bar{X} \to X$ be the minimal resolution of singularities of X, and let $D = \sum_{i=1}^{n}D_i$ be the exceptional divisor of f, where D_i is a $(−2)$-curve.

Lemma 4.19. Assume that there exists a \mathbb{P}^1-fibration $g : \tilde{X} \to \mathbb{P}^1$ such that at most one irreducible component of the exceptional divisor D not contained in any fiber of g. Moreover, this component is an 1-section. Then there exists an ample divisor H such that X has a H-polar cylinder.

Proof. Let F be a unique exception curve not contained in any fiber of g (if there exist no such component, then F is an arbitrary 1-section). Put

$$-K_{\bar{X}} \sim_{\mathbb{Q}} 2F + \sum a_i E_i.$$

Note that all E_i are contained in fibers of g. Consider an ample divisor $H = -K_{\bar{X}} + mC$, where C is a fiber of g, m is a sufficiently large number. Then there exists a divisor $\tilde{H} \sim_{\mathbb{Q}} H$ such that

$$\tilde{H} = 2F + \sum b_i \tilde{E}_i,$$

where $b_i > 0$ and the set of \tilde{E}_i contains all irreducible curves in singular fibers of g. Then

$$\tilde{X} \setminus \text{Supp}(\tilde{H}) \cong \mathbb{A}^1 \times (\mathbb{P}^1 \setminus \{p_1, \ldots, p_k\}).$$
where \(p_1, \ldots, p_k \) correspond to singular fibers of \(g \). So, \(\bar{X} \) has a \(H \)-polarization. Hence, \(X \) has a \(f(H) \)-polarization. \(\square \)

Run MMP for \(X \). We obtain

\[
X = X_1 \to X_2 \to \cdots \to X_n.
\]

Assume that \(X_n = \mathbb{P}^1 \). Consider the composition of the minimal resolution and MMP, We have a \(\mathbb{P}^1 \)-fibration \(g: \bar{X} \to \mathbb{P}^1 \). Note that all exception curves of \(f \) are contained in fibers of \(g \). Hence, by Lemma 4.19, we see that there exists an ample divisor \(H \) such that \(X \) has a \(H \)-polar cylinder.

So, we may assume that \(X_n \) is a del Pezzo surface with \(\rho(X_n) = 1 \) and du Val singularities.

Lemma 4.20. Assume that \(X_n \) has a \(-K_{X_n} \)-polar cylinder. Then there exists an ample divisor \(H \) such that \(X \) has a \(H \)-polar cylinder.

Proof. Put \(h: X \to X_n \). Assume that \(h \) contracts extremal rays in points \(p_1, p_2, \ldots, p_m \). Let \(M \) be an anti-canonical divisor such that \(X_n \setminus \text{Supp}(M) \cong Z \times \mathbb{A}^1 \). Let \(\phi: X_n \setminus \text{Supp}(M) \to Z \) be the projection on first factor. Let \(C_1, C_2, \ldots, C_k \) be the fibers of \(\phi \) such that \(C_1, C_2, \ldots, C_k \) contain \(p_1, p_2, \ldots, p_m \), and let \(\bar{C}_1, \bar{C}_2, \ldots, \bar{C}_k \) be the closure of \(C_1, C_2, \ldots, C_k \) on \(X_n \). Since \(\rho(X_n) = 1 \), we see that \(\bar{C}_i \sim_{Q} -a_i K_{X_n} \). Consider the divisor

\[
L = M + m_1 \bar{C}_1 + m_2 \bar{C}_2 + \cdots + m_k \bar{C}_k,
\]

where \(m_1, m_2, \ldots, m_k \) are sufficiently large numbers. Note that the divisor \(L \sim_{Q} -\alpha K_{X_n} \). Let \(L \) be the proper transform of the divisor \(L \). Consider \(H = \bar{L} + \sum \epsilon_i E_i \), where \(E_i \) are irreducible components of the exceptional divisor of \(h \) and \(\epsilon_i \) are positive numbers. Note that for sufficiently large \(m_i \) and for sufficiently small \(\epsilon_i \), the divisor \(H \) is ample. Moreover, \(X \setminus \text{Supp}(H) \cong (Z \setminus \{q_1, \ldots, q_k\}) \times \mathbb{A}^1 \), where \(q_1, \ldots, q_k \) are \(k \) points on \(Z \). So, \(X \) has a \(H \)-polar cylinder. \(\square \)

Let \(X \) be a del Pezzo surface with du Val singularities. Assume that \(\rho(X) = 1 \). Then \(X \) has a \(H \)-polar cylinder if and only if \(X \) has a \(-K_X \)-polar cylinder, where \(H \) is an arbitrary ample divisor. On the other hand, there exists a classification of del Pezzo surfaces \(X \) such that \(X \) has a \(-K_X \)-polar cylinder (see [1]). By a classification of a del Pezzo surface \(X \) has not cylinders if \(X \) has one of the following collections of singularities: \(4A_2, 2A_1 + 2A_3, 2D_4 \). So, we may assume that \(\rho(X) > 1 \) and \(X \) has not cylinders. Run MMP for \(X \). We obtain

\[
X = X_1 \to X_2 \to \cdots \to X_n.
\]

By Lemma 4.19 we may assume that \(X_n \) is a del Pezzo surface with \(\rho(X_n) = 1 \) and du Val singularities. By Lemma 4.20 we see that \(X_n \) is a del Pezzo surface with one of the following collection of singularities: \(4A_2, 2A_1 + 2A_3, 2D_4 \). On the other hand, the surface \(X \) has a smaller degree than \(X_n \). But degree of \(X_n \) is equal to one. So, \(X = X_n \). On the other hand, \(\rho(X_n) = 1 \), a contradiction.
This completes the proof of Theorem 1.6.

References

Grigory Belousov
Plekhanov Russian University of Economics
Moscow, Russia
E-mail address: belousov_grigory@mail.ru