DOI QR코드

DOI QR Code

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed (Laboratory of Materials and Reactive Systems - LMSR. University of Sidi Bel Abbes) ;
  • Boulenouar, Abdelkader (Laboratory of Materials and Reactive Systems - LMSR. University of Sidi Bel Abbes) ;
  • Benguediab, Mohamed (Laboratory of Materials and Reactive Systems - LMSR. University of Sidi Bel Abbes)
  • Received : 2016.05.26
  • Accepted : 2017.07.16
  • Published : 2017.10.10

Abstract

In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

Keywords

References

  1. Achour, T., Bachir Bouiadjra, B. and Serier, B. (2003), "Numerical analysis of the performances of the bonded composite patch for reducing stress concentration and repairing cracks at notch", Comput. Mater. Sci., 28(1), 41-48. https://doi.org/10.1016/S0927-0256(03)00054-5
  2. Albedah, A., Benyahia, F., Dinar, H. and Bachir Bouiadjra, B. (2013), "Analytical formulation of the stress intensity factor for crack emanating from central holes and repaired with bonded composite patch in aircraft structures", Compos.: Part B, 45(1), 852-857. https://doi.org/10.1016/j.compositesb.2012.08.019
  3. Ayatollahi, M.R. and Hashemi, R. (2007), "Computation of stress intensity factors ($K_I$, ($K_II$) and T-stress for cracks reinforced by composite patching", Compos. Struct., 78(4), 602-609. https://doi.org/10.1016/j.compstruct.2005.11.024
  4. Bachir Bouiadjra, B., Belhouari, M. and Serier, B. (2002), "Computation of the stress intensity factors for patched cracks with bonded composite patch in mode I and mixed mode", Compos. Struct., 56(4), 401-406. https://doi.org/10.1016/S0263-8223(02)00023-5
  5. Bachir Bouiadjra, B., Oudad, W., Albedah, A., Benyahia, F. and Belhouari, M. (2012), "Effects of the adhesive disband on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95. https://doi.org/10.1016/j.matdes.2011.12.028
  6. Baker, A.A. (1981), "Bonded composite repair for fatigue-cracked primary aircraft structure", Compos. Struct., 47(1), 431-443. https://doi.org/10.1016/S0263-8223(00)00011-8
  7. Baker, A.A. (1984), "Repair of cracked or defective metallic aircraft components with advanced fibre composites - an overview of Australian work", Compos. Struct., 2(2), 153-181. https://doi.org/10.1016/0263-8223(84)90025-4
  8. Baker, A.A., Callinan, R.J., Davis, M.J., Jones, R. and Williams, J.G. (1984), "Repair of Mirage III aircraft using BFRP crackpatching technique", Theor. Appl. Fracture. Mech., 2(1), 1-16. https://doi.org/10.1016/0167-8442(84)90035-1
  9. Belhouari, M., Bachir Bouiadjra, B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: A numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005
  10. Benamara, N., Boulenouar, A. and Aminallah, M. (2015), "Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Boumerdes, Algeria, November.
  11. Benamara, N., Boulenouar, A., Aminallah, M. and Benseddiq, N. (2017a), "On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria", Struct. Eng. Mech., Int. J., 61(3), 371-379. https://doi.org/10.12989/sem.2017.61.3.371
  12. Benamara, N., Boulenouar, A. and Aminallah, M. (2017b), "Strain energy density prediction of mixed-mode crack propagation in functionally graded materials", Period. Polytech. Mech. Eng., 61(1), 60-67 https://doi.org/10.3311/PPme.9682
  13. Bezzerrouki, M., Bachir Bouiadjra, B. and Ouinas, D. (2008), "SIF for cracks repaired with single composite patch having two adhesive bands and double symmetric one in aircraft structures", Comput. Mater. Sci., 44(2), 542-546. https://doi.org/10.1016/j.commatsci.2008.04.029
  14. Bezzerouki, M., Albedah, A., Bachir Bouiadjra, B., Ouddad, W. and Benyahia, F. (2011), "Computation of the stress intensity factor for repaired cracks with bonded composite wrap in pipes under traction effect", J. Thermoplast. Compos., 26(6), 831-844.
  15. Boulenouar, A., Aminallah, M. and Benamara, N. (2013a), "Computation of the SIF for repaired semi-circular surface cracks in finite-thickness plates with bonded composite patch", J. Mater. Process. Environ., 1(2), 121-127.
  16. Boulenouar, A., Benseddiq, N. and Mazari, M. (2013b), "Strain energy density prediction of crack propagation for 2D linear elastic materials", Theor. Appl. Fract. Mec., 67-68, 29-37. https://doi.org/10.1016/j.tafmec.2013.11.001
  17. Boulenouar, A., Benseddiq, N., Merzoug, M., Benamara, N. and Mazari, M. (2016), "A strain energy density theory for mixed mode crack propagation in rubber-like materials", J. Theor. Appl. Mech., 54(4), 1417-1431.
  18. Chung, K.H. and Yang, W.H. (2002), "Fracture mechanics analysis on the bonded repair of a skin/stiffener with an inclined central crack", Compos. Struct., 55(3), 269-276. https://doi.org/10.1016/S0263-8223(01)00163-5
  19. Jian-Bin, H., Xu-Dong, L. and Zhi-Tao, M. (2015), "Fatigue behavior of thick center cracked aluminum plates repaired by two-sided composite patching", Mater. Des., 88, 331-335. https://doi.org/10.1016/j.matdes.2015.09.011
  20. Jones, R. and Callinan, R.J. (1979), "Finite element analysis of patched cracks", J. Struct. Mech., 7(2), 107-130. https://doi.org/10.1080/03601217908905315
  21. Hosseini-Toudeshky, H. and Mohammadi, B. (2009), "Mixedmode numerical and experimental fatigue crack growth analyses of thick aluminium panels repaired with composite patches", Compos. Struct., 91(1), 1-8. https://doi.org/10.1016/j.compstruct.2009.04.022
  22. Hosseini-Toudeshky, H., Ghaffari, M.A. and Mohammadi, B. (2012), "Finite element fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches", Compos. Struct., 94(5), 1771-1780. https://doi.org/10.1016/j.compstruct.2012.01.002
  23. Gu, L., Kasavajhala, A.R.M. and Zhao, S. (2011), "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs", Compos.: Part B, 42(3), 505-510. https://doi.org/10.1016/j.compositesb.2010.11.014
  24. Kaddouri, K., Ouinas, D. and Bachir Bouiadjra, B. (2008), "FE analysis of the behaviour of octagonal bonded composite repair in aircraft structures", Comput. Mater. Sci., 43(4), 1109-1111. https://doi.org/10.1016/j.commatsci.2008.03.003
  25. Kumar, A.M. and Singh, R. (1997), "3D finite element modelling of a composite patch repair", Proceedings of the 9th International Conference on Fracture, Sydney, Australia, April, pp. 2159-2166.
  26. Li, F.Z, Shih, C.F. and Needleman. A.A. (1985), "A comparison of methods for calculating energy release rates", Engng. Fract. Mech., 21(2), 405-421. https://doi.org/10.1016/0013-7944(85)90029-3
  27. Maligno, A.R., Soutis, C. and Silberschmidt, V.V. (2013), "An advanced numerical tool to study fatigue crack propagation in aluminium plates repaired with a composite patch", Engng. Fract. Mech., 99, 62-78. https://doi.org/10.1016/j.engfracmech.2013.01.006
  28. Mhamdia, R., Bachir Bouadjra, B., Serier, B., Ouddad, W., Feaugas, X. and Touzain, S. (2011), "Stress intensity factor for repaired crack with bonded composite patch under thermomechanical loading", J. Reinf. Plast. Compos., 30(5), 416-424. https://doi.org/10.1177/0731684410397899
  29. Murakami, Y. (1985), Stress Intensity Factors Handbook, Vol. I and II, Pergamon Press, Oxford, UK.
  30. Nikishkov, G.P. and Atluri, S.N. (1987), "Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the 'equivalent domain integral' method", Int. J. Numer. Meth. Engng., 24(9), 801-821.
  31. Ouinas, D., Bouiadjra, B.B. and Serier, B. (2007a), "The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials", Compos. Struct., 78(2), 278-284. https://doi.org/10.1016/j.compstruct.2005.10.012
  32. Ouinas, D., Bouiadjra, B.B., Serier, B. and Said Bekkouche, M. (2007b), "Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge", Compos. Struct., 80(4), 514-522. https://doi.org/10.1016/j.compstruct.2006.07.005
  33. Ouinas, D., Bachir Bouiadjra, B., Himouri, S. and Benderdouch, N. (2012), "Progressive edge cracked aluminium plate repaired with adhesively bonded composite patch under full width disbond", Compos.: Part B, 43(2), 805-811. https://doi.org/10.1016/j.compositesb.2011.08.022
  34. Ramji, M. and Srilakshmi, R. (2009), "Design of composite patch reinforcement applied to mixed-mode cracked panel using finite element analysis", J. Reinf. Plast. Compos., 31(9), 585-595. https://doi.org/10.1177/0731684412440601
  35. Ramji, M., Srilakshmi, R. and Bhanu Prakash, M. (2013), "Towards optimization of patch shape on the performance of bonded composite repair using FEM", Compos.: Part B, 45(1), 710-720. https://doi.org/10.1016/j.compositesb.2012.07.049
  36. Rice, R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
  37. Rose, L.R.F. (1981), "An application of the inclusion analogy for bonded reinforcements", Int. J. Solid. Struct., 17(8), 827-838. https://doi.org/10.1016/0020-7683(81)90091-3
  38. Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three-dimensional crack front in a thermally stressed body", Int. J. Fract., 30(2), 79-102. https://doi.org/10.1007/BF00034019
  39. Srilakshmi, R. and Ramji, M. (2012), "Experimental investigation of adhesively bonded patch repair of an inclined center cracked panel using DIC", J. Reinf. Plast. Compos., 33(12), 1130-1147. https://doi.org/10.1177/0731684414525245
  40. Srilakshmi, R., Ramji, M. and Chinthapenta, V. (2015), "Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC", Engng. Fract. Mech., 134, 182-201. https://doi.org/10.1016/j.engfracmech.2014.12.012
  41. Turaga, V.R.S. and Ripudaman, S. (1999), "Modelling of a patch repair to a thin cracked sheet", Engng. Fract. Mech., 62(2), 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5

Cited by

  1. Effect of curing condition on mechanical properties of scarf-repaired composite laminates vol.37, pp.4, 2017, https://doi.org/10.12989/scs.2020.37.4.419
  2. Stress Analysis in Damaged Pipeline with Composite Coating vol.11, pp.22, 2017, https://doi.org/10.3390/app112210676