DOI QR코드

DOI QR Code

Surface Morphology and Optical Properties of Aluminosilicate Glass Manufactured by Physical and Chemical Etching Process

물리·화학적 혼합 식각 공정에 의해 제조된 알루미노실리케이트 유리의 표면 형상과 광학 특성

  • Kim, Namhyuk (Department of Materials Engineering, Soonchunhyang University) ;
  • Sohn, Jeongil (Department of Materials Engineering, Soonchunhyang University) ;
  • Kim, Gwangsoo (Department of Materials Engineering, Soonchunhyang University)
  • 김남혁 (순천향대학교 신소재공학과) ;
  • 손정일 (순천향대학교 신소재공학과) ;
  • 김광수 (순천향대학교 신소재공학과)
  • Received : 2017.06.29
  • Accepted : 2017.08.29
  • Published : 2017.09.27

Abstract

Surface morphology and optical properties such as transmittance and haze effect of glass etched by physical and chemical etching processes were investigated. The physical etching process was carried out by pen type sandblasting process with $15{\sim}20{\mu}m$ dia. of $Al_2O_3$ media; the chemical etching process was conducted using HF-based mixed etchant. Sandblasting was performed in terms of variables such as the distance of 8 cm between the gun nozzle and the glass substrate, the fixed air pressure of 0.5bar, and the constant speed control of the specimen stage. The chemical etching process was conducted with mixed etching solution prepared by combination of BHF (Buffered Hydrofluoric Acid), HCl, and distilled water. The morphology of the glass surface after sandblasting process displayed sharp collision vestiges with nonuniform shapes that could initiate fractures. The haze values of the sandblasted glass were quantitatively acceptable. However, based on visual observation, the desirable Anti-Glare effect was not achieved. On the other hand, irregularly shaped and sharp vestiges transformed into enlarged and smooth micro-spherical craters with the subsequent chemical etching process. The curvature of the spherical crater increased distinctly by 60 minutes and decreased gradually with increasing etching time. Further, the spherical craters with reduced curvature were uniformly distributed over the etched glass surface. The haze value increased sharply up to 55 % and the transmittance decreased by 90 % at 60 minutes of etching time. The ideal haze value range of 3~7 % and transmittance value range of above 90 % were achieved in the period of 240 to 720 minutes of etching time for the selected concentration of the chemical etchant.

Keywords

References

  1. H. W. Ahn, J. H. Oh, S. G. Kweon and S. D. Choi, J. Korean Soc. Manuf. Process. Eng., 13, 145 (2014) (in Korean).
  2. S. H. Lee, H. E. Song, G. H Kang, H. K. Ahn and D. Y. Han, Korean Inst. Electr. Eng., 62, 76 (2013) (in Korean).
  3. K. S. Kim, G. H. Kang and G. J. Yu. J, Korean Sol. Energ. Soc., 28, 8 (2008) (in Korean).
  4. D. Y. Kong, D. H. Kim, S. H. Yun, Y. H. Bae, I. S. Yu, C. S. Cho and J. H. Lee, J. Korean Vac. Soc., 20, 233 (2011) (in Korean). https://doi.org/10.5757/JKVS.2011.20.3.233
  5. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi and A. Fujishima, Langmuir, 27, 3275 (2011). https://doi.org/10.1021/la200438p
  6. H. R. Lee, D. J. Kim and K. H. Lee, Surf. Coat. Technol., 142, 468 (2001).
  7. D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. B. Park, G. Irvin and P. Drzaic, J. Soc. Information Display, 17, 941 (2009). https://doi.org/10.1889/JSID17.11.941
  8. N. Yamaguchi, K. Tadanaga, A. Matsuda, T. Minami and M. Tatsumisago, Surf. Coat. Technol., 201, 3653 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.122
  9. B. G. Kum, Y. C. Park, Y. J. Chang, J. Y. Jeon and H. M. Jang, Thin Solid Films, 519, 3778 (2011). https://doi.org/10.1016/j.tsf.2010.12.163
  10. B. Louis, N. Krins, M. Faustini and D. Grosso, J. Phys. Chem. C, 115, 3115 (2011). https://doi.org/10.1021/jp109653p
  11. Y. M. Lee, S. H. Nam and J. H. Boo, Appl. Sci. Conv. Tech., 24, 289 (2015) (in Korean).
  12. S. S. Kim, J. S. Hwang and B. J. Jeon, Korean Inst. Electr. Mater. Eng., 28, 607 (2015) (in Korean). https://doi.org/10.4313/JKEM.2015.28.9.607
  13. N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja and G. Fantozzi. EU. Ceram. Soc., 27, 3221 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.01.011
  14. N. Bouaouadja, S. Bouzid, M.Hamidouche, C. Bousbaa and M. Madjoubi. Appl. Eng., 65, 99 (2000). https://doi.org/10.1016/S0306-2619(99)00044-6
  15. J. K. Hwa and J. S. Kim, Korean J. Met. Mater., 54, 49 (in Korean).
  16. Y. Shin. Thesis, Kangwon National University, Korea, (2016) (in Korean).
  17. M. Kolli, M. Hamidouche, N. Bouaouadja and G. Fantozzi, EU. Ceram. Soc., 29, 2697 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.03.020
  18. D. S. Park, D. K. Kang, J. K. Kim, E. J. Seong and J. Y. Han, J. Korean Soc. Mach. Tool. Eng., 15, 10 (2006) (in Korean).
  19. Result from meetings of mobile device company 'S' and camera window manufacturer 'U' (2015).
  20. L. Wong, T. Suratwala, M. D. Feit, P. E. Miller and R. A. Steele, J. Non-Cryst. Soilds, 355, 797 (2008).
  21. J. S. Judge, J. Electrochem. Soc., 118, 1772 (1971). https://doi.org/10.1149/1.2407835
  22. Y. Saito, S. Okamoto, H. Inomata, J. Kurach, T. Hidaka and H. Kasai, Thin Solid Films, 517, 2900 (2009). https://doi.org/10.1016/j.tsf.2008.11.077
  23. C. Iliescu, J. Jing, F. E. H. Tay, J. Miao and T. Sun, Surf. Coat. Tech., 198, 314 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.094
  24. T. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr and L. Wong, J. Am. Ceram. Soc., 94, 416 (2011). https://doi.org/10.1111/j.1551-2916.2010.04112.x
  25. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot and O. Rondeau, Optic Express, 17, 20448 (2009). https://doi.org/10.1364/OE.17.020448