DOI QR코드

DOI QR Code

Quasi-Solid-State Polymer Electrolytes Based on a Polymeric Ionic Liquid with High Ionic Conductivity and Enhanced Stability

  • Jeon, Nawon (Department of Chemical Engineering, Hanyang University) ;
  • Jo, Sung-Geun (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Sang-Hyung (Department of Chemical Engineering, Hanyang University) ;
  • Park, Myung-Soo (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2017.07.26
  • Accepted : 2017.09.10
  • Published : 2017.09.30

Abstract

A polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxypropyl) imidazolium iodide) (PMAPII), was synthesized as a single-iodide-ion-conducting polymer and employed in a gel polymer electrolyte. Gel polymer electrolytes prepared from iodine, 4-tert-butylpyridine, ${\gamma}$-butyrolactone, and PMAPII were applied in quasi-solid-state dye-sensitized solar cells (DSSCs). The addition of 16 wt.% PMAPII provided the most favorable environment, striking a compromise between the iodide ion concentration and the ionic mobility, which resulted in the highest conversion efficiency of the resulting DSSCs. The quasi-solid-state DSSC assembled with the optimized gel polymer electrolyte exhibited a relatively high conversion efficiency of 7.67% under AM 1.5 illumination at $100mA\;cm^{-2}$ and better stability than that of the DSSC with a liquid electrolyte.

Keywords

References

  1. B. O'Reagen and M. Gratzel, Nature, 1991, 353(6346), 737-740. https://doi.org/10.1038/353737a0
  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev.,2010, 110(11), 6595-666. https://doi.org/10.1021/cr900356p
  3. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin and M. Gratzel, Science, 2011, 334(6056), 629-634. https://doi.org/10.1126/science.1209688
  4. Md. M. Rahman, H.-S. Son, S.-S. Lim, K.-H. Chung and J.-J. Lee, J. Electrochem. Sci. and Tech., 2011,2(2), 110-115. https://doi.org/10.5229/JECST.2011.2.2.110
  5. J. Kwon and J.H. Park, J. Electrochem. Sci. and Tech., 2013, 4(3), 89-92. https://doi.org/10.5229/JECST.2013.4.3.89
  6. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nat. Mater., 2003, 2(6), 402. https://doi.org/10.1038/nmat904
  7. D.-W. Kim, Y.-B. Jeong, S.-H. Kim, D.-Y. Lee and J.-S. Song, J. Power Sources, 2005, 149, 112-116. https://doi.org/10.1016/j.jpowsour.2005.01.058
  8. B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, Sol. Energy Mater. Sol. Cells, 2006, 90(5), 549-573. https://doi.org/10.1016/j.solmat.2005.04.039
  9. M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou and Y. Lin, Electrochim. Acta, 2007, 52(14), 4858-4863. https://doi.org/10.1016/j.electacta.2007.01.027
  10. Z. Huo, S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan and X. Fang, Sol. Energy Mater. Sol. Cells, 2007, 91(20), 1959-1965. https://doi.org/10.1016/j.solmat.2007.08.003
  11. J.N. de Freitas, A.F. Nogueira and M.-A. De Paoli, J. Mater. Chem., 2009, 19(30), 5279-5294. https://doi.org/10.1039/b900928k
  12. S.J. Lim, Y.J. Choi, K.S. Song and D.-W. Kim, Electrochem. Commun., 2011, 13(11), 1284-1287. https://doi.org/10.1016/j.elecom.2011.08.020
  13. S.J. Lim, Y.S. Kang and D.-W. Kim, Electrochim. Acta, 2011, 56(5), 2031-2035. https://doi.org/10.1016/j.electacta.2010.12.027
  14. M. Wang, X. Pan, X. Fang, L. Guo, C. Zhang, Y. Huang, Z. Huo and S. Dai, J. Power Sources, 2011, 196(13), 5784-5791. https://doi.org/10.1016/j.jpowsour.2011.02.051
  15. X. Huang, Y. Liu, J. Deng, B. Yi, X. Yu, P. Shen and S. Tan, Electrochim. Acta, 2012, 80, 219-226. https://doi.org/10.1016/j.electacta.2012.07.014
  16. Y.-C. Wang, K.-H. Huang, R.-X. Dong, C.-T. Liu, C.-C. Wang, K.-C. Ho and J.-J. Lin, J. Mater. Chem., 2012, 22(14), 6982-6989, https://doi.org/10.1039/c2jm16131a
  17. C. Wang, L. Wang, Y. Shi, H. Zhang and T. Ma, Electrochim. Acta, 2013, 91, 302-306. https://doi.org/10.1016/j.electacta.2012.12.096
  18. L.-Y. Chang, C.-P. Lee, R. Vittal, J.-J. Lin and K.-C. Ho, J. Mater. Chem. A, 2013, 1(9), 3055-3060. https://doi.org/10.1039/c2ta00784c
  19. B.K. Mandal, C.J. Walsh, T. Sooksimuang, S.J. Behroozi, S.G. Kim and Y.T. Kim, Chem. Mater., 2000, 12(1), 6-8. https://doi.org/10.1021/cm9906497
  20. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin and T. Sato, J. Am. Chem. Soc., 2008, 130(35), 11568-111569. https://doi.org/10.1021/ja802158q
  21. Y. Jiang, Y.L. Cao, P. Liu, J.F. Qian and H.X.Yang, Electrochim. Acta, 2010, 55(22), 6415-6419. https://doi.org/10.1016/j.electacta.2010.06.046
  22. E. Azaceta, R. Marcilla, A. Sanchez-Diaz, E. Palomares and D. Mecerreyes, Electrochim. Acta, 2010, 56(1), 42-46. https://doi.org/10.1016/j.electacta.2009.01.058
  23. R. Kawano, T. Katakabe, H. Shimosawa, M.K. Nazeeruddin, M. Gratzel, H. Matsui, T. Kitamura, N. Tanabe and M. Watanabe, Phys. Chem. Chem. Phys., 2010, 12(8), 1916-1921. https://doi.org/10.1039/b920633g
  24. D. Mecerreyes, Prog. Polym. Sci., 2011, 36(12), 1629-1648. https://doi.org/10.1016/j.progpolymsci.2011.05.007
  25. W.S. Chi, J.K. Koh, S.H. Ahn, J.S. Shin, H. Ahn, D.Y. Ryu and J.H. Kim, Electrochem. Commun., 2011, 13(12), 1349-1352. https://doi.org/10.1016/j.elecom.2011.08.005
  26. G. Wang, L. Wang, S. Zhuo, S. Fang and Y. Lin, Chem. Commun., 2011, 47(9), 2700-2702. https://doi.org/10.1039/c0cc04948d
  27. X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu, H. Zhang, X. Han, B. Sun, G. Fu, Y. Zhang and F. Yan, J. Mater. Chem., 2012, 22(34), 18018-18024. https://doi.org/10.1039/c2jm33273f
  28. M. Dobbelin, I. Azcune, M. Bedu, A.R. de Luzuriaga, A. Genua, V. Jovanovski, G. Cabanero and I. Odriozola, Chem. Mater., 2012, 24(9), 1583-1590. https://doi.org/10.1021/cm203790z
  29. Y.-S. Lee and D.-W. Kim, Electrochim. Acta, 2013, 106, 460-464. https://doi.org/10.1016/j.electacta.2013.05.137
  30. M. Hirao, K. Ito and H. Ohno, Electrochim. Acta, 2000, 45(8), 1291-1294. https://doi.org/10.1016/S0013-4686(99)00334-5
  31. M. Yoshizawa and H. Ohno, Electrochim. Acta, 2001, 46(10), 1723-1728. https://doi.org/10.1016/S0013-4686(00)00777-5
  32. W. Ogihara, S. Washiro, H. Nakajima and H. Ohno, Electrochim. Acta, 2006, 51(13), 2614-2619. https://doi.org/10.1016/j.electacta.2005.07.043
  33. B. Yu, F. Zhou, C. Wang and W. Liu, Eur. Polym. J, 2007, 43(6), 2699-2707. https://doi.org/10.1016/j.eurpolymj.2007.03.027
  34. A. Hauch and A. Georg, Electrochim. Acta, 2001, 46(22), 3457-3466. https://doi.org/10.1016/S0013-4686(01)00540-0
  35. M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, A. Hinsch, R. Sastrawan and H.J. Gores, Electrochim. Acta, 2006, 52(1), 161-169. https://doi.org/10.1016/j.electacta.2006.04.050
  36. C. Longo, J. Freitas and M.A. De Paoli, J. Photochem. Photobiol. A: Chem., 2003, 159(1), 33-39. https://doi.org/10.1016/S1010-6030(03)00106-0
  37. Q. Wang, J.E. Moser and M. Gratzel, J. Phys. Chem. B, 2005, 109(31), 14945-14953. https://doi.org/10.1021/jp052768h
  38. K.-M. Lee, V. Suryanarayanan and K.-C. Ho, J. Power Sources, 2008, 185(2), 1605-1612. https://doi.org/10.1016/j.jpowsour.2008.07.094
  39. N.G. Park, S.H. Chang, J.van de Lagemaat, K.J. Kim and A.J. Frank, Bull. Korean Chem. Soc., 2000, 21(10), 985-988.
  40. X. Zhang, H. Yang, H.M. Xiong, F.Y. Li and Y.Y. Xia, J. Power Sources, 2006, 160(2), 1451-1455. https://doi.org/10.1016/j.jpowsour.2006.03.008
  41. T.C. Wei, C.C. Wan and Y.Y. Wang, Sol. Energy Mater. Sol. Cells, 2007, 91(20), 1892-1987. https://doi.org/10.1016/j.solmat.2007.07.005