DOI QR코드

DOI QR Code

Effect of Metal Loading Methods on the Catalytic Activity for N2O/NO Simultaneous Reduction over Fe/BEA Zeolite Catalyst

Fe/BEA 제올라이트 촉매의 N2O/NO 동시 환원 반응에서 금속 담지 방법이 촉매 활성에 미치는 영향

  • Received : 2017.03.07
  • Accepted : 2017.06.07
  • Published : 2017.10.01

Abstract

The influence of catalytic activity on Fe loading methods over Fe/BEA zeolite catalyst in the simultaneous reduction of $N_2O/NO$ has been studied. The Fe/BEA zeolite catalysts were prepared by ion exchange and impregnation. Catalytic tests were carried out in the selective catalytic reduction using ammonia as a reductant to identify the activity of prepared catalysts. The results show that the ion exchanged catalyst exhibited higher NO and $N_2O$ conversions than the impregnated catalysts did. To investigate the difference in catalytic activity, we performed various analyses such as XRD, $H_2-TPR$, $O_2-TPD$ and XPS. It is considered that the increase in the activity of the ion exchange catalyst is due to improved reducibility and increased oxygen desorption rate. In addition, the ion exchange catalyst was found through the XPS analysis that $Fe^{2+}$, which is related to the catalytic activity, is formed about 1.6 times more than the impregnated catalyst.

Fe/BEA 제올라이트 촉매의 $N_2O/NO$ 동시 환원반응에서 Fe이온을 담지하는 방법이 촉매의 활성에 미치는 영향을 고찰하였다. Fe/BEA 제올라이트 촉매는 함침법과 이온교환법으로 제조되었으며, 제조된 촉매의 성능을 확인하기 위하여 암모니아를 환원제로 사용하는 선택적 촉매 환원 반응을 실시하였다. 그 결과 이온교환 촉매는 함침 촉매보다 높은 NO 및 $N_2O$ 전환율을 나타내었다. 이러한 촉매 활성의 차이를 규명하기 위하여 XRD, $H_2-TPR$, $O_2-TPD$, XPS와 같은 촉매 특성 분석들이 수행되었다. 이온교환 촉매의 활성 증가는 향상된 환원 특성 및 증가된 산소 탈착 속도에 기인한 것으로 판단되며, 이온교환 촉매 제조시 촉매 활성과 관련이 있는 $Fe^{2+}$가 함침 촉매에 비해 약 1.6배 이상 형성되는 것을 XPS 분석을 통하여 확인하였다.

Keywords

References

  1. Li, Y. and Armor, J. N., "Catalytic Decomposition of Nitrous Oxide on Metal Exchanged Zeolites," Appl. Catal. B: Environ., 1, L21-L29(1992). https://doi.org/10.1016/0926-3373(92)80019-V
  2. Perez-Ramirez, J., Kapteijn, F., Schoffel, K. and Moulijn, J. A., "Formation and control of $N_2O$ in nitric acid production: Where do we stand today?," Appl. Catal. B: Environ., 44, 117-151(2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  3. Kim, M. H., "Formation of $N_2O$ in $NH_3$-SCR $DeNO_xing$ Reaction with $V_2O_5$/$TiO_2$-Based Catalysts for Fossil Fuels-Fired Power Stations," Korean Chem. Eng. Res., 51(2), 163-170(2013). https://doi.org/10.9713/kcer.2013.51.2.163
  4. Mauvezin, M., Delahay, G., Coq, B., Kieger, S., "$N_2O$ Decomposition in the Presence of Ammonia on Faujasite-supported Metal Catalysts," Appl. Catal. B: Environ., 23, L79-L82(1999). https://doi.org/10.1016/S0926-3373(99)00072-7
  5. Kapteijn, F., Rodriguez-Mirasol, J. and Moulijn, J. A., "Heterogeneous Catalytic Decomposition of Nitrous Oxide," Appl. Catal. B: Environ., 9, 25-64(1996). https://doi.org/10.1016/0926-3373(96)90072-7
  6. Coq, B., Mauvezin, M., Delahay, G., Butet, J. B. and Kieger, S., "The Simultaneous Catalytic Reduction of NO and $N_2O$ by $NH_3$ using an Fe-Zeolite-Beta Catalyst," Appl. Catal. B: Environ., 27, 193-198(2000). https://doi.org/10.1016/S0926-3373(00)00148-X
  7. Perez-Ramirez, J., Kapteijn, F., Mul, G. and Moulijn, J. A., "Superior Performance of ex-framework FeZSM-5 in direct $N_2O$ Decomposition in Tail-gases from Nitric Acid Plants," Chem. Commun., 693-694(2001).
  8. Groves, M. C. E. and Sasonow, A., "Uhde Envinox$^{(R)}$ Technology for Nox and $N_2O$ Abatement: a Contribution to Reducing Emissions from Nitric Acid Plants," J. Integr. Environ. Sci., 7, 211-222(2010).
  9. Mauvezin, M., Delahay, G., KiBlich, F., Coq, B. and Kieger, S., "Catalytic Reduction of $N_2O$ by $NH_3$ in Presence of Oxygen using Fe-exchanged Zeolites," Catal. Lett., 62, 41-44(1999). https://doi.org/10.1023/A:1019078401694
  10. Kinger, G., Lugstein, A., Swagera, R., Ebel, M., Jentys, A. and Vinek, H., "Comparison of Impregnation, Liquid- and Solid-state Ion Exchange Procedures for the Incorporation of Nickel in HMFI, HMOR and HBEA Activity and Selectivity in n-nonane Hydroconversion," Micropor. Mesopor. Mater., 39, 307-317(2000). https://doi.org/10.1016/S1387-1811(00)00211-0
  11. Canizares, P., de Lucas, A., Dorado, F., DuraAn, A. and Asencio, I., "Characterization of Ni and Pd supported on H-mordenite Catalysts: Influence of the Metal Loading Method," Appl. Catal. A: General, 169, 137-150(1998). https://doi.org/10.1016/S0926-860X(98)00008-8
  12. Zhang, X., Shen, Q., He, C., Ma, C., Cheng, J. and Hao, Z., "$N_2O$ Catalytic Reduction by $NH_3$ over Fe-zeolites: Effective Removal and Active Site," Catal. Commun., 18, 151-155(2012). https://doi.org/10.1016/j.catcom.2011.11.029
  13. Delahay, G., Mauvezin, M., Coq, B. and Kieger, S., "Selective Catalytic Reduction of Nitrous Oxide by Ammonia on Iron Zeolite Beta Catalysts in an Oxygen Rich Atmosphere: Effect of Iron Contents," J. Catal., 202, 156-162(2001). https://doi.org/10.1006/jcat.2001.3279
  14. Mauvezin, M., Delahay, G., Coq, B., Kieger, S., Jumas, J. C. and Olivier-Fourcade, J., "Species in Fe-BEA: Influence of the Exchange Level," J. Phys. Chem. B, 105, 928-935(2001). https://doi.org/10.1021/jp0021906
  15. Chen, B., Liu, N., Liu, X., Zhang, R., Li, Y., Li, Y., Sun, X., "Study on the Direct Decomposition of Nitrous Oxide over Fe-beta Zeolites: From Experiment to Theory," Catal. Today, 175, 245-255(2011). https://doi.org/10.1016/j.cattod.2011.04.010
  16. Coq, B., Mauvezin, M., Delahay, G. and Kieger, S., "Kinetics and Mechanism of the $N_2O$ Reduction by $NH_3$ on a Fe-Zeolite-Beta Catalyst," J. Catal., 195, 298-303(2000). https://doi.org/10.1006/jcat.2000.2980
  17. Zhu, L., Zhong, Z., Yang, H., Wang, C. and Wang, L., "$DeNO_x$ Performance and Characteristic Study for Transition Metals Doped Iron Based Catalysts," Korean J. Chem. Eng., 34(4), 1229-1237 (2017). https://doi.org/10.1007/s11814-016-0369-y
  18. Perez-Ramirez, J., Kapteijn, F., Mul, G. and Moulijn, J. A., "Highly Active $SO_2$-resistant ex-framework Fe-MFI Catalysts for direct $N_2O$ Decomposition," Appl. Catal. B: Environ., 35, 227-234(2002). https://doi.org/10.1016/S0926-3373(01)00259-4
  19. Chen, H. Y. and Sachtler, W. M. H., "Activity and Durability of Fe/ZSM-5 Catalysts for Lean Burn NOx Reduction in the Presence of Water Vapor," Catal. Today, 42, 73-83(1998). https://doi.org/10.1016/S0920-5861(98)00078-9
  20. Delahay, G., Mauvezin, M., Guzman-Vargas, A. and Coq, B., "Effect of the Reductant Nature on the Catalytic Removal of $N_2O$ on Fe-Zeolite-B Catalysts," Catal. Commun., 3, 385-389(2002). https://doi.org/10.1016/S1566-7367(02)00157-7
  21. Meng, M., Lin, P. Y. and Fu, Y. L., "The Catalytic Removal of CO and NO over Co-Pt(Pd, Rh)/${\gamma}$-$Al_2O_3$ Catalysts and Their Structural Characterizations," Catal. Lett., 48, 213-222(1997). https://doi.org/10.1023/A:1019099625781
  22. Nedyalkova, R., Shwan, S., Skoglundh, M. and Olsson, L., "Improved Low-Temperature SCR Activity for Fe-BEA Catalysts by $H_2$-Pretreatment," Appl. Catal. B: Environ., 138-139, 373-380(2013). https://doi.org/10.1016/j.apcatb.2013.03.009
  23. Long, R. Q. and Yang, R. T., "Reaction Mechanism of Selective Catalytic Reduction of NO with $NH_3$ over Fe-ZSM-5 Catalyst," J. Catal., 207, 224-231(2002). https://doi.org/10.1006/jcat.2002.3528