DOI QR코드

DOI QR Code

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Received : 2017.07.04
  • Accepted : 2017.09.04
  • Published : 2017.09.30

Abstract

The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.

Keywords

References

  1. G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 64 (2004), AMS, 9-15.
  2. K. Drudge, On the orbits of Singer groups and their subgroups, Elec. J. Comb. 9 (2002), R15.
  3. M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Comb. 3 (1994), 17-76. https://doi.org/10.1023/A:1022450120589
  4. V. Reiner, D. Stanton and D. White, The Cyclic Sieving Phenomenon, J. Combin. Theory Ser. A, 108 (1) (2004), 17-50. https://doi.org/10.1016/j.jcta.2004.04.009
  5. B. Sagan, The cyclic sieving phenomenon: a survey, in \Surveys in Combinatorics 2011", London Mathematical Society Lecture Note Series, Vol. 392 (2011), Cambridge University Press, Cambridge, 183-234.
  6. D. Stanton and D. White, Sieved q-Binomial Coefficients, Preprint.
  7. J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser A 68 (1994), 372-409. https://doi.org/10.1016/0097-3165(94)90112-0