DOI QR코드

DOI QR Code

Forward Vehicle Movement Estimation Algorithm

전방 차량 움직임 추정 알고리즘

  • Received : 2017.04.21
  • Accepted : 2017.05.08
  • Published : 2017.09.30

Abstract

This paper proposes a forward vehicle movement estimation algorithm for the image-based forward collision warning. The road region in the acquired image is designated as a region of interest (ROI) and a distance look up table (LUT) is made in advance. The distance LUT shows horizontal and vertical real distances from a reference pixel as a test vehicle position to any pixel as a position of a vehicle on the ROI. The proposed algorithm detects vehicles in the ROI, assigns labels to them, and saves their distance information using the distance LUT. And then the proposed algorithm estimates the vehicle movements such as approach distance, side-approaching and front-approaching velocities using distance changes between frames. In forward vehicle movement estimation test using road driving videos, the proposed algorithm makes the valid estimation of average 98.7%, 95.9%, 94.3% in the vehicle movements, respectively.

본 논문은 영상 기반 전방 추돌 경고를 위한 전방 차량 움직임 추정 알고리즘을 제안한다. 사전에 취득된 영상에서 차도 영역이 관심 영역으로 지정되고 거리 참조표가 생성된다. 거리 참조표는 실험 차량 위치인 기준 화소에서 관심 영역 상 차량 위치인 임의 화소까지 수평과 수직 실제 거리를 보여주다. 제안된 알고리즘은 관심영역에서 차량들을 검출하고, 검출된 차량들에게 레이블을 지정하고, 거리 참조표를 이용해 그들의 거리 정보를 저장한다. 그리고 나서 제안된 알고리즘은 프레임간 거리 변화를 이용해 접근 거리, 측방 접근 속도, 전방 접근 속도 같은 차량 움직임들을 추정한다. 도로 주행 동영상들을 이용한 전방 차량 움직임 추정 실험에서 제안된 알고리즘은 차량 움직임들에 대해 각각 평균 98.7%, 95.9%, 94.3%를 유효하게 추정하고 있다.

Keywords

References

  1. T. Jiang, S. Petrovic, U. Ayyer, A. Tolani and S. Husain, "Self-Driving Cars: Disruptive or Incremental?," Applied Innovation Review, UC Berkeley, no 1. pp. 3-22, Jun. 2015.
  2. Autonomous_car [Internet]. Available : https://en.wikipedia.org/wiki/Autonomous_car.
  3. M. Zhao, "Advanced Driver Assistant System," Technical White Paper, Intel, 2015 [Internet]. Available : http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/advanced-driver-assistant-system-paper.pdf.
  4. K. D. Kusano, and H. C. Gabler, "Safety benefits of forward collision warning, brake assist, and autonomous braking systems in rear-end collisions," IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4 pp. 1546-1555, Dec. 2012. https://doi.org/10.1109/TITS.2012.2191542
  5. D. G. Bailey, "A new approach to lens distortion correction," in Proceedings of Image and Vision Computing, Auckland, pp. 59-64, 2002.
  6. Y. H. Yu and S. W. Jang, "Design and Implementation of 4-sided Monitoring System Providing Bird's Eye View in Car PC Environment,"Journal of The Korea Institute of Information and Communication Engineering, vol. 16, no. 1, pp.153-159, Aug. 2012. https://doi.org/10.6109/jkiice.2012.16.1.153
  7. H. G. Jung, and J. K. Suhr, "Lane Detection-based Camera Pose Estimation," Transaction of the Korean Society of Automotive Engineers, vol. 23, no. 5, pp. 463-470, Sep. 2015. https://doi.org/10.7467/KSAE.2015.23.5.463
  8. H. D. Park and J. S. Oh, "Lane Departure Detection Using a Partial Top-view Image,"Journal of The Korea Institute of Information and Communication Engineering, vol. 20, no. 10, pp.1553-1559, Aug. 2017.
  9. A. Mukhtar, L. Xia, and T. B. Tang, "Vehicle detection techniques for collision avoidance systems: A review," IEEE Transactions on Intelligent Transportation Systems vol. 16, no. 5, pp. 2318-2338, Oct. 2015. https://doi.org/10.1109/TITS.2015.2409109
  10. R. C. Gonzalez and E. W. Richard, Digital Image Processing, 3rd ed. New Jersey, NJ: Prentice Hall, 2008.