DOI QR코드

DOI QR Code

Development of CODOG Propulsion System Simulator

CODOG 함정 추진체계 시뮬레이터 개발

  • Jang, Jae-hee (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Shin, Seung-woo (Division of Naval R&D Center, Hanwha Systems) ;
  • Kim, Min-gon (Division of Naval R&D Center, Hanwha Systems) ;
  • Oh, Jin-seok (Division of Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2017.06.22
  • Accepted : 2017.07.09
  • Published : 2017.09.30

Abstract

Duties required for naval ship such as anti-submarine, anti-ship, and supply, etc are diversified, so the ECS (Enfineering Control System) is required for executing the mission effectively. The ECS monitors and controls the propulsion system in order that naval ship can perform the mission. As the in-country development of ECS is progressed, a test system for ECS is needed, and a naval ship propulsion system simulator based on CODOG was developed on this study. The naval ship propulsion system simulator based on CODOG which is divided into gas turbine model, diesel engine model, reduction gear model and controllable pitch propeller model, simulates to feedback of control commands of ECS. As a result of the experiment, it is able to confirm speed, torque and power, etc. of the gas turbine, diesel engine and shaft according to ECS propulsion mode.

대잠, 대함, 보급 등, 함정에 요구되는 임무가 다양해지면서 함정의 추진체계 또한 임무를 효과적으로 수행하기 위해 ECS(Engineering Control System)를 필요로 한다. ECS는 추진체계를 모니터링하고 제어함으로써 함정이 임무를 수행할 수 있도록 한다. 최근 ECS 국산화 개발이 진행되면서 ECS에 대한 시험 검증을 위한 시스템이 요구되었고, CODOG 기반의 함정 추진체계 시뮬레이터를 개발하였다. CODOG 기반의 함정 추진체계 시뮬레이터는 가스터빈 모델, 디젤엔진 모델, 감속기어 모델, 가변추진기 모델로 나누어 제어 명령에 대한 피드백을 모의한다. 실험 결과, ECS 추진 모드에 따른 가스터빈, 디젤엔진 및 축의 속도, 토크, 출력 등을 확인할 수 있었다.

Keywords

References

  1. J. T. Hwang, S. Y. Hong, H. W. Kwon, K. K. Lee and J. H. Song, 2017, "Dual Fuel Generator Modeling and Simulation for Development of PMS HILS," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 3, pp. 613-619, Mar. 2017. https://doi.org/10.6109/jkiice.2017.21.3.613
  2. M. Altosole, M. Figari and M. Viviani, "Simulation of the Dynamic Behaviour of a CODLAG Propulsion Plant," Wharship 2010 Advanced Technologies in Naval Design and Construction, vol. 10, no.10, pp.109-115, June 2010.
  3. M. Martelli and M. Figari "Real-Time model-based design for CODLAG propulsion control strategies," Ocean Engineering, vol.141, no.1, pp.265-276, June 2017. https://doi.org/10.1016/j.oceaneng.2017.06.029
  4. K. Marouani, H. Guendouz, B Tabbache, F. Khoucha, and A. Kheloui, (2013, June). Experimental Investigation of an Emulator 'Hardware In the Loop' for Electric Naval Propulsion System. Control & Automation (MED), 2013 21st Mediterranean Conference on. IEEE [Online], 10(1), pp. 125-130. Available : http://ieeexplore.ieee.org/abstract/document/6608709/.
  5. K. K. Yum, "Simulation of a Hybrid Marine Propulsion System in Waves," CIMAC CONGRESS, vol.202, no.1, pp.3-16, June. 2016.
  6. E. Gohary, M. Mohamed, and R. Nader, "Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants," Journal of Marine Science and Application, vol.15, no.1, pp.95-103, Feb. 2016. https://doi.org/10.1007/s11804-016-1346-x
  7. F.J.E. Agulila, R. Rodriguez Quintero, E. Carvajal Trujillo, and M. T. Garcia, "Analysis of regulation methods of a combined heat and power plant based on gas turbines," Energy, vol. 72, no.1, pp. 574-589, Aug. 2014. https://doi.org/10.1016/j.energy.2014.05.083
  8. G. Kokkulunk, A. Parlak and H. H. Erdem, "Determination of performance degradation of a marine diesel engine by using curve based approach," Applied Thermal Engineering vol.108, no.1, pp.1136-1146, Sep. 2016. https://doi.org/10.1016/j.applthermaleng.2016.08.019
  9. J. Desong, (2008, December). The Study on Dynamic Parameters of CODOG in the Mode Switching Process, Mechatronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on. IEEE [Online], 9(5), pp. 500-504, Available : http://ieeexplore.ieee.org/abstract/document/4735647/.
  10. M. Altosole and M. Figari, "Effective Simple Methods for Numerical Modelling of Marine Engines in Ship Propulsion Control Systems Design," Journal of Naval Architecture and Marine Engineering, vol. 228, no.4, pp.373-397, Dec. 2011.
  11. M. Viviani, F.C.N.I. Spa and G. Dubiioso, "Marine Propulsion System Dynamics During Ship Manoeuvres," International conference on high-performance marine vehicles, vol.18, no.19, pp.81-93, Jan. 2008.
  12. G. Benvenuto, S. Brizzolara and M. Figari, "Simulation of the Propulsion System Behaviour During Ship Standard Manoeuvres," Practical Design of Sips(Shanngai), vol.1, no.1, pp.657-663, Sep. 2011.
  13. M. Altosole, G. Benvenuto, and M. Martelli "Advances in automation design for fast vessels propulsion," Proceedings of the 9th symposium on high speed marine vehicles, vol.1, no.1, pp. 1-6, May 2011.

Cited by

  1. 전기추진 함정용 프로세서 레버 제어기 설계 vol.25, pp.1, 2017, https://doi.org/10.6109/jkiice.2021.25.1.134
  2. 전구급 교전분석을 위한 함정 취약성 평가모델 개발 vol.30, pp.1, 2017, https://doi.org/10.9709/jkss.2021.30.1.001
  3. 함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발 vol.25, pp.8, 2021, https://doi.org/10.6109/jkiice.2021.25.8.1103