An Approach of Dimension Reduction in k-Nearest Neighbor Based Short-term Load Forecasting

FaZheng Chu*, Sung-Hwan Jung**

ABSTRACT

The k-nearest neighbor (k-NN) algorithm is one of the most widely used benchmark algorithm in classification. Nowadays it has been further applied to predict time series. However, one of the main concerns of the algorithm applied on short-term electricity load forecasting is high computational burden. In the paper, we propose an approach of dimension reduction that follows the principles of highlighting the temperature effect on electricity load data series. The results show the proposed approach is able to reduce the dimension of the data around 30%. Moreover, with temperature effect highlighting, the approach will contribute to finding similar days accurately, and then raise forecasting accuracy slightly.

Key words: Load Forecasting, k-Nearest Neighbor, Dimension Reduction

1. INTRODUCTION

Nowadays electricity load forecasting is the routine for power generation unit schedule. It is vital for the security and reliability of the electric power transmission system. Generally, load forecasting aims to extrapolate pattern of load consumption under the effect of factors, such as weather and day-of-week, etc. However, it is a complex nonlinear problem linked with social considerations, economic factors, and weather variations, then it is difficult to obtain accurate and realistic models for such methods.

There are many methods existing in electricity load forecasting. As time series, auto-regressive integrated moving average model (ARIMA) is typically used by many researchers as a sophisticated benchmark for evaluating alternative proposals [1,2]. The regression related methods [3,4] and exponential smoothing ones [5,6] are always attractive because they are easily implemented. Nowadays data mining technique also becomes attractive and widespread due to their flexibility and explanation capabilities [7]. In paper [7], it provided a comparison of Seasonal ARIMA and Holt-Winters model. Differing from previous studies, it classified load pattern into 4 types and handled them respectively. It mentioned k-NN algorithm and used the algorithm in classification. However, it did not address the the issue of dimension reduction. The papers [8,9] belong to the sort of k-NN based forecasting. And they do not discuss dimension reduction either.

In this paper, we propose an approach of dimension reduction suitable for k-NN based short-term load forecasting. As we known, the underlying principle of k-NN based forecasting is to find observations in the past which may similar to the object that to be predicted. In short-term load forecasting, temperature variations cause uncertainty mostly. Therefore, the novel of the approach we proposed is to eliminate the features which are not

* Corresponding Author: Sung-Hwan Jung. Address: 20 Changwondeahak-ro, Uchorgan-su, Gyeongsangnam-do, 514 Korea, TEL: +82-55-213-3815, FAX: +82-55-265-7429, E-mail: sjung@changwon.ac.kr
** Dept. of Computer Engineering, Changwon National University
sensitive to temperature variation. It is different from the past studies which focus on if the feature is helpful to discriminate the observations.

The rest of the paper is organized as the following sections: Section 2 analyzes the decisive factors on short-term electricity load and raises assumptions of our approach. Section 3 elaborates the principle we proposed for dimensionality reduction on load data series and shows comparison between a conventional k-NN method[10] and the method we proposed. Section 4 consists of summary and conclusion.

2. DECISIVE FACTORS ON SHORT-TERM LOAD

Due to the wide application of electricity in modern economic life, there are a lot of factors impacting on the electricity consumption, such as economic growth, population, industrial restructuring, technique developing and renewable energy. The influence from these factors on electricity load varies with time span. As to short-term load forecasting, date attributes and weather condition are widely accepted as decisive factors.

2.1 Date Attribute

Date attribute refers to what day is the date and whether the day is a holiday or not. The typical load profile of day-of-week in Fig. 1, based on the average of daily electricity load from New York, March 2015. It is very easy to distinguish the pattern of weekdays from those of weekend. Additionally, the figure also indicates that the gap between Saturday and Sunday is bigger than those among weekdays.

The load profiles for days in a week are easily distinguished, furthermore it is easy to ascertain date attribute of any specific date. Hence taking date attribute as an input is a zero-cost measure to improve k-NN based load forecasting, since we can locate similar days more accurately with date attribute.

2.2 Temperature

Electricity load is strongly impacted by weather conditions which include precipitation, high and low temperatures, thunderstorms and snowfall. Because of the significant correlation among these weather indicators, conventionally temperature was introduced as the only one variable in load forecasting methods for purpose of simplicity. It is worth noting that when the temperature rises upon a critical point the electricity load would increase drastically. Average electricity load to average outdoor temperature is plotted in Fig. 2, based on the data of New York, 2015. The turning point shown in the figure is about 55 Fahrenheit degrees.

2.3 Assumptions

According to the analysis above, we raise two assumptions:

1. Short-term electricity load is only decided by two factors: date attribute and weather.
2. Similar days are the days of similarity on both date attribute and weather condition simultaneously.

Based on the two assumptions, it is feasible to denote short-term electricity load L on time point t simply as:

\[L_t = f(w_t, v_t) + \epsilon, \]

(1)
where w denotes weather condition, and v denotes date attribute, $\varepsilon \sim N(\mu, \sigma)$ denotes error term.

Then, as to forecast the L_{t-h} forecasting methods intend to find the k nearest neighbor as $L_{t-w1}, L_{t-w2}, L_{t-w3}, ..., L_{t-wk}$, which close to the L_t.

Considering the Eq. (1), even though two days are close on value L, it cannot guarantee the two days are close on both w and v. Following assumption (2), the two days are not surely the similar days.

To filter out nearest neighbors which are not identical to L_t on day-of-week, as we call it “day-alignment”, would be beneficial to k-NN based load forecasting. That has been reported in [3].

Following the assumptions, we propose a method as “weather-alignment” to improve k-NN based short-term load forecasting.

3. METHODOLOGY

Conventionally, we take temperature as the main input for weather factor. During a day, the sensitivity of load to temperature variation is changing constantly. To evaluating the sensitivity and remove the data that insensitive to temperature will lighten computational burden and improve k-NN based short-term load forecasting.

3.1 Sensitivity of Load to Temperature Variation

In fact, the sensitivity to temperature variation of electricity load is different for each user group, such as residential user, commercial user and industrial user. Temperature Sensitivity (TS) of electricity load is defined as:

$$TS = \frac{\Delta E}{\Delta T}$$ (2)

where ΔE is difference of electricity load and ΔT is difference of temperature.

The temperature sensitivity of each user group in Taiwan are shown as Fig. 3, industrial user is usually of less sensitivity to high temperature than the others. But in recent years, the temperature sensitivity of residential user keeps increasing due to the pursuit of high quality life [11].

The correlation of temperature and electricity load is also helpful for weather-alignment. Usually, Pearson Correlation Coefficient (PCC) is used to measure correlation of two variables. However, load data series is usually non-stationary, it often presents changing mean and variance over time. For that reason, we suggest Zhang-Yaoting index to measure the correlation of electricity load and temperature [12].

Zhang-Yaoting index is derived from the notion of probabilistic. For independent event A and B, the probability of simultaneous occurrence of them is

$$P(AB) = P(A)P(B)$$ (3)

Accordingly, the rules could be employed to
evaluate the correlation of A and B as shown in Table 1.

Specific to our issue of the correlation between electricity load and temperature variation, the index can be calculated as following description.

Given any two time points \(j \) and \(i \), the corresponding electricity load and temperature are denoted by \(L_i, L_j \) and \(T_i, T_j \), respectively. Let event A is \(L_i > L_j \) and event B is \(T_i > T_j \).

When event A occurs, there are three situations for event B:

1. The event B rarely occurs: They are of negative correlation.
2. The event B frequently occurs: They are of positive correlation.
3. The event B occurs in nearly half of the possible. They are of independent.

Now, let \(a_{ij} \) equals the value of sign function of \((L_i - L_j)\), that is:

\[
a_{ij} = \text{sgn}(L_i - L_j) = \begin{cases} 1, & L_i > L_j, \\ 0, & L_i = L_j, \ i < j, \ i, j = 1, 2, ..., n, \\ -1, & L_i < L_j.
\end{cases}
\]

\[(4)\]

So is \(b_{ij} \) for term \((T_i - T_j)\):

\[
b_{ij} = \text{sgn}(T_i - T_j), \ i < j, \ i, j = 1, 2, ..., n.
\]

\[(5)\]

Then, Zhang-Yaoting correlation index \(Q \) could be implemented as:

\[
Q = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij}}{2n(n-1)} \quad i \neq j
\]

\[(6)\]

It is obvious that Zhang-Yaoting correlation index \(Q \) located in \([-1, 1]\), that close to 1 indicates a significant positive correlation, and -1 for significant negative correlation.

Zhang correlation index of temperature and electricity load at 24 hours of day are shown as Fig. 4. According to the figure, the electricity load of period from 11 a.m. to 8 p.m. responds to the temperature variation outstandingly, on the contrary the load of period before 8 a.m. is not sensitive to the temperature variation.

Fig. 4. Zhang correlation index of load and temperature.

3.2 Dimensionality Reduction

According to the temperature sensitivity of electricity load and level of correlation to temperature, we can rank the 24 hours of day. Consequently, temperature insensitive data should be removed. For the purpose, a new parameter \(d (d < 24) \) is introduced to denote the size of dimension of load data. The parameter \(d \) and the number of nearest neighbor \(k \) should be determined during training.

3.3 Parameter Determination

As mentioned above, parameter \(k \) and \(d \) should be determined by the training process. Since \(k \) denotes the number of nearest neighbors, a small \(k \) would subject to overfitting, and a large \(k \) would pull forecasting accuracy down because it took more dissimilar neighbors into account. Moreover, parameter \(k \) is partly depended on how long the term of training data series, especially when the data series are not stationary obviously.

Normally, in our approach, parameter \(d \) has no consistent influence on forecasting accuracy
clearly. It should be determined in training completely. With our method, keeping accuracy and achieving dimension reduction is possible.

Parameter k and d interact with each other; it will be different from case to case.

3.4 Result

The load time series was collected from New York Independent System Operator [13]. It is of New York city in 2010 to 2016. As a benchmark, Table 2 shows the result of standard k-NN based forecasting. That indicates when $k=9$ it gets the minimum MAPE 5.372%.

According to our approach, the 24 hours in a day are sorted in ascending order by electricity load sensitivity to temperature effect. In our case, they are sorted as:

5, 4, 3, 1, 2, 6, 7, 24, 9, 8, 23, 21, 10, 22, 20, 11, 12, 13, 19, 14, 15, 16, 18, 17

In training, the MAPE under each given parameter k and d is shown in Table 3. After training, the parameters k and d should be 9 and 17 respectively with the proposed method.

So, the final comparison is shown in Table 4. The proposed method reduced the dimension size (parameter d) from 24 to 17, at the same time, the MAPE dropped slightly.

In conclusion, considering sensitivity to temperature variation, the proposed method of dimensionality reduction is effective for k-NN based short-term load forecasting.

Table 2. MAPE with k-NN based method ($d=24$)

<table>
<thead>
<tr>
<th>k-NN method</th>
<th>$k=5$</th>
<th>$k=6$</th>
<th>$k=7$</th>
<th>$k=8$</th>
<th>$k=9$</th>
<th>$k=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPE (%)</td>
<td>5.427</td>
<td>5.431</td>
<td>5.387</td>
<td>5.393</td>
<td>5.372</td>
<td>5.424</td>
</tr>
</tbody>
</table>

Table 3. MAPE under each given k and d pair

<table>
<thead>
<tr>
<th>MAPE (%)</th>
<th>$k=5$</th>
<th>$k=6$</th>
<th>$k=7$</th>
<th>$k=8$</th>
<th>$k=9$</th>
<th>$k=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d=23$</td>
<td>5.453</td>
<td>5.416</td>
<td>5.411</td>
<td>5.369</td>
<td>5.396</td>
<td>5.444</td>
</tr>
<tr>
<td>$d=22$</td>
<td>5.413</td>
<td>5.377</td>
<td>5.348</td>
<td>5.378</td>
<td>5.408</td>
<td>5.422</td>
</tr>
<tr>
<td>$d=21$</td>
<td>5.415</td>
<td>5.437</td>
<td>5.393</td>
<td>5.385</td>
<td>5.361</td>
<td>5.419</td>
</tr>
<tr>
<td>$d=20$</td>
<td>5.468</td>
<td>5.45</td>
<td>5.401</td>
<td>5.388</td>
<td>5.354</td>
<td>5.405</td>
</tr>
<tr>
<td>$d=19$</td>
<td>5.488</td>
<td>5.434</td>
<td>5.44</td>
<td>5.394</td>
<td>5.372</td>
<td>5.384</td>
</tr>
<tr>
<td>$d=18$</td>
<td>5.474</td>
<td>5.397</td>
<td>5.381</td>
<td>5.372</td>
<td>5.367</td>
<td>5.392</td>
</tr>
<tr>
<td>$d=17$</td>
<td>5.487</td>
<td>5.389</td>
<td>5.363</td>
<td>5.341</td>
<td>5.326</td>
<td>5.382</td>
</tr>
<tr>
<td>$d=16$</td>
<td>5.554</td>
<td>5.456</td>
<td>5.379</td>
<td>5.354</td>
<td>5.345</td>
<td>5.354</td>
</tr>
<tr>
<td>$d=15$</td>
<td>5.603</td>
<td>5.507</td>
<td>5.413</td>
<td>5.41</td>
<td>5.399</td>
<td>5.396</td>
</tr>
</tbody>
</table>

Table 4. Result of comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>k-NN method</th>
<th>Proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPE(%)</td>
<td>5.372</td>
<td>5.328</td>
</tr>
</tbody>
</table>

4. SUMMARY AND CONCLUSION

The idea of k-NN based short-term load forecasting is to provide prediction based on selected neighbors. In the paper, we consider the ideal neighbors should close to each other on both date attribute and weather condition. Meanwhile, dimensionality reduction is always main concern in k-NN based method. Therefore, we propose a new idea for dimensionality reduction which is following the principles of highlighting the temperature effect on electricity load variation. The proposed method contributes to select appropriate neighbors out, in the same time, it achieves dimensionality reduction well. Compared to standard k-NN based
forecasting on hourly load data series, our approach can reduce dimension of hourly load data series by about 30%, and does not degrade the accuracy of the method.

REFERENCE

An Approach of Dimension Reduction in k-Nearest Neighbor Based Short-term Load Forecasting

FaZheng Chu

He received the B.S. and M.S. degrees in Economics from Qingdao University, China in 1999 and 2004 respectively. He is a lecturer in Economics and Management College of Qingdao Agricultural University, China since 2004. He received the Ph. D. degree in Computer Engineering from Department of Computer Engineering, Changwon National University in August, 2017. His research interests include econometric modelling and forecasting, and image processing.

Sung-Hwan Jung

He received the B.S., M.S., and Ph. D. degrees in Electronic Engineering (information and communication major) from Kyungpook National University, Korea in 1979, 1983, and 1988, respectively. He had worked for the Electronic and Telecommunication Research Institute in Korea as a research staff, where he had experienced some national research projects including developing a portable computer. In 1988, he joined the faculty of Department of Computer Engineering at Changwon National University in Korea, where he is currently working as a full professor.

From 1992 to 1994, he was a postdoctoral research staff of the Department of Electrical and Computer Engineering at the University of California at Santa Barbara (UCSB). From 1999 to 2000, he also worked for the Colorado School of Mine (CSM) in Golden, Colorado as an exchange professor. From 2008 to 2009, he had experience on the medical information processing at the Dental School of the University of Missouri at Kansas City (UMKC), as a visiting professor. He is an Information System Auditor and P.E. in the area of Information Processing and Electronic Computer.

His research interests include content-based image retrieval, steganography, watermarking, medical image processing, computer vision and pattern recognition, etc. He is a co-author of nine image processing related books including “Visual C++ Digital Image Processing Using Open Source CxImage,” “Practical Computer Vision Programming Using VC++ and OpenCV,” and Image Processing and Its Application with OpenCV.”