DOI QR코드

DOI QR Code

격실 내 장애물이 폭압에 의한 인원 피해에 미치는 영향

The Effect of Obstacles in a Compartment on Personnel Injury Caused by Blast

  • 투고 : 2017.04.06
  • 심사 : 2017.06.30
  • 발행 : 2017.09.30

초록

격실 내부에서의 폭발로 인한 인원의 피해를 분석하였다. 특히 격실 내에서 폭압 전파에 영향을 미치는 돌출된 장애물의 유무에 따른 인원 피해를 비교하였다. 격실 내에 장애물이 없는 경우에 경험적 고속처리모델을 이용하여 폭압을 예측할 수 있다. 하지만 격실 내부에서는 폭압 프로파일이 개활지에서와 달리 복잡하며 의자와 같은 구조물이 존재하는 경우에는 경험적 고속처리모델 적용이 불가하다. 따라서 장애물이 있는 격실 내부 폭압은 유한요소해석을 이용해 획득하였다. 또한 개활지의 폭압 프로파일을 기준으로 개발된 Friedlander 압력-충격량 곡선을 격실 내부에서의 복잡한 폭압 전파로 인해 피해평가에 적용할 수 없어, Axelsson 단자유도 모델을 적용하여 인원 피해를 분석하였다. 장애물이 있는 경우 인원의 흉벽 속도는 26에서 76 퍼센트(%) 만큼 감소되었으며 격실내 인원피해 또한 감소되었다.

Blast injuries in a compartment are investigated, and the effects of obstacles on blast injury are particularly analyzed by comparing injuries in the compartments with or without protruding obstacles inside. Even if blast pressure profile tends to be complicated in a confined space unlike in open field, it can be obtained in a relatively short time by using some empirical fast running models for simple confined spaces. However, a finite element method should be employed to obtain blast pressure profiles in a case with obstacles in confined spaces, because the obstacles heavily disturb blast waves. On the other hand, Axelsson SDOF(Single degree of freedom) model and ASII(Adjusted severity of injury index) injury level are employed to estimate blast injury in compartments, because the usual pressure-impulse injury criterion based on the ideal Friedlander waves in open the field cannot be applied to personnel in a confined space due to complexity of blast waves inside. In cases with obstacles, chest wall velocity was reduced by 26 to 76 percent(%) and the personnel injury in the compartment caused by blast was also reduced.

키워드

참고문헌

  1. K.Y. Park (2013), "Development Plane of ROK Missile Defense System", Journal of Unification road, Vol. 293, No. 1, pp. 44-49. (박경운 (2013), "한국군의 미사일 방어체계 발전방안", 통일로, Vol. 293, No. 1, pp. 44-49).
  2. C.H. Kim (2000), "North Korea Threatens to Spread Missile on Northeast Asian Security", Defense and technology, No. 1, pp. 34-43. (김철환 (2000), "동북아 안보에 대한 북한의 미사일 확산 위협", 국방과 기술, No. 1, pp. 34-43).
  3. S.J. Baek, (2016), "Numerical Study on Variation of Penetration Performance into Concrete with Reinforcement Modeling Methods", Journal of the Korea Society for Simulation, Vol. 25, No. 3, pp. 97-105. (백승주 (2016), "철근 모사 방법에 따른 콘크리트 관통성능 변화에 관한 수치적 연구", 한국시뮬레이션학회 논문지, Vol. 25, No. 3, pp. 97-105). https://doi.org/10.9709/JKSS.2016.25.3.097
  4. M.I. Shin, H.J. Cho, J.H. Lee, S.J. Lim, W.J. Kim, W.S. Kim, W.Y. Hong (2016), "Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys", Journal of the Korea Society for Simulation, Vol. 25, No. 3, pp. 53-63. (신명인, 조현진, 이진호, 임준석, 이석진, 김완진, 김우식, 홍우영 (2016), "부유식 및 자항식 기만기의 혼합 운용을 고려한 수상함의 생존율에 대한 효과도 분석", 한국시뮬레이션학회 논문지, Vol. 25, No. 3, pp. 53-63). https://doi.org/10.9709/JKSS.2016.25.3.053
  5. M.D. Goel, V.A. Matsagar, A.K. Gupta, S. Marburg (2012), "An Abridged Review of Blast Wave Parameters", Defence Science Journal, Vol. 62, No. 5, pp. 300-306. https://doi.org/10.14429/dsj.62.1149
  6. C.N. Kingery, G. Bulmash (1984), ARBL-TR-02555 Report, US Army BRL.
  7. I.G. Bowen, A. Holiday, E.R. Fletcher, D.R. Richmond, C.S. White (1965), DASA Report 1675, Defense Atomic Support Agency.
  8. I.G. Bowen, E.R. Fletcher, D.R. Richmond (1968), DASA Report 2113, Defense Atomic Support Agency.
  9. C.R. Boss, K.A. Rafaels, R.S. Salzar (2008), "Pulmonary Injury Risk Assessment for Short-duration Blasts", Journal of Trauma, Vol. 65, No. 3, pp. 604-615. https://doi.org/10.1097/TA.0b013e3181454ab4
  10. K.A. Rafaels, C.R. Boss, R.S. Salzar (2010), "Pulmonary Injury Risk Assessment for Long-duration Blasts: A Meta-analysis", Journal of Trauma, Vol. 69, No. 2, pp. 368-374. https://doi.org/10.1097/TA.0b013e3181e88122
  11. J.C. Dalton, J.E. Gott, P.A. Parker, M. McAndrew, C. Bowling, (2008), UFC 3-340-02 Report, Department of defense.
  12. H. Axelsson, J.T. Yelverton (1996), "Chest Wall Velocity Predictor of Nonauditory Blast Injury in a Complex Wave Environment", The Journal of Trauma: Injury, Infection, and Critical Care, Vol. 40, No. 3, pp. 31-37. https://doi.org/10.1097/00005373-199601000-00007
  13. J. Britt, G. Mcmahon (2008), "Tabular Explosive Source Models used in BlastX" Proceeding of the 20th International Symposium on Military Aspects of Blast and Shock.
  14. H. Ji (2016), "Experimental Data Analysis using Computational Numerical Analysis on the Response of One-way Reinforced Concrete Slab under Blast Loading", Journal of the Korea Institute of Military Science and Technology, Vol. 19, No. 4, pp. 424-434. (지훈 (2016), "전산수치해석을 이용한 일방향 철근 콘크리트 부재의 폭발 실험결과분석", 한국군사과학기술학회지, Vol. 19, No. 4, pp. 424-434). https://doi.org/10.9766/KIMST.2016.19.4.424
  15. A. Kalre, F. Zhu, K.H. Yang, A.I. King (2014), "Key Parameters in Blast Modeling using 2D to 3D ALE Mapping Technique", 13th International LS-DYNA User Conference, pp. 1-8.
  16. Y.L. Huang, M.R. Willford (2012), "Validation of LS-DYNA MMALE with BLast Experiments", 12th International LS-DYNA User Conference, pp. 1-12.
  17. http://www.matweb.com
  18. W. Emily, H. Tim, M. Andrew, J. Robert (2010), "Comparing Blast Effects on Human Torso Finite Element Model agnist Exising Lethality Curve", 34th DDESB Seminar Portland, Applied Physics Laboratory.
  19. D.S. Cheng, C.W. Hung, S.J. Pi (2013), "Numerical Simulation of Near-Field Explosion", Journal of Applied Science and Engineering, Vol. 16, No. 1, pp. 61-67.
  20. B. David, F. John, S. Yongjiang (2002), "Measurement Uncertainty and Conservatism in Simplified Blast Model" Proceeding of the 30th Explosive Safety Seminar.
  21. M.S. Driels, (2012), Weaponeering: Conventional Weapon System Effectiveness, U.S. Naval Postgraduate School, Monterey, Califonia.