DOI QR코드

DOI QR Code

Investigation of Water Transport in Newly Developed Micro Porous Layers for Polymer Electrolyte Membrane Fuel Cells

  • Alrwashdeh, Saad S. (Helmholtz-Zentrum Berlin) ;
  • Markotter, Henning (Helmholtz-Zentrum Berlin) ;
  • Haussmann, Jan (Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden Wurttemberg (ZSW)) ;
  • Hilger, Andre (Helmholtz-Zentrum Berlin) ;
  • Klages, Merle (Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden Wurttemberg (ZSW)) ;
  • Muller, Bernd R. (BAM Bundesanstalt fur Materialforschung und - Prufung) ;
  • Kupsch, Andreas (BAM Bundesanstalt fur Materialforschung und - Prufung) ;
  • Riesemeier, Heinrich (BAM Bundesanstalt fur Materialforschung und - Prufung) ;
  • Scholta, Joachim (Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden Wurttemberg (ZSW)) ;
  • Manke, Ingo (Helmholtz-Zentrum Berlin)
  • Received : 2017.06.07
  • Accepted : 2017.08.08
  • Published : 2017.09.30

Abstract

In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field.

Keywords

References

  1. Alink R, et al. (2013) The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells. J. Power Sources 233, 358-368. https://doi.org/10.1016/j.jpowsour.2013.01.085
  2. Alrwashdeh S, et al. (2017) Improved performance of polymer electrolyte membrane fuel cells with modified micro porous layer structures. Energy Technol.
  3. Alrwashdeh S S, et al. (2016) Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy 102, 161-165. https://doi.org/10.1016/j.energy.2016.02.075
  4. Alrwashdeh S S, et al. (2016) X-ray tomographic investigation of water distribution in polymer electrolyte membrane fuel cells with different gas diffusion media. ECS Trans. 72, 99-106. https://doi.org/10.1149/07208.0099ecst
  5. Bazylak A (2009) Liquid water visualization in PEM fuel cells: a review. Int. J. Hydrogen Energy 34, 3845-3857. https://doi.org/10.1016/j.ijhydene.2009.02.084
  6. Bellows R J, et al. (1999) Neutron imaging technique for in situ measurement of water transport gradients within nafion in polymer electrolyte fuel cells. J. Electrochem. Soc. 146, 1099-1103. https://doi.org/10.1149/1.1391727
  7. Carrette L, Friedrich K A, and Stimming U (2001) Fuel cells-fundamentals and applications. Fuel Cells 1, 5-39. https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  8. Garche J, et al. (2009) Encyclopedia of Electrochemical Power Sources, p. 4538, (Elsevier, Amsterdam).
  9. Gostick J T, et al. (2009) On the role of the microporous layer in PEMFC operation. Electrochem. Commun. 11, 576-579. https://doi.org/10.1016/j.elecom.2008.12.053
  10. Gorner W, et al. (2001) BAMline: the first hard X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468(Part 1), 703-706.
  11. Haussmann J, et al. (2013) Synchrotron radiography and tomography of water transport in perforated gas diffusion media. J. Power Sources 239, 611-622. https://doi.org/10.1016/j.jpowsour.2013.02.014
  12. Hinebaugh J, Challa P R, and Bazylak A (2012) Accounting for lowfrequency synchrotron X-ray beam position fluctuations for dynamic visualizations. J. Synchrotron Radiat. 19, 994-1000. https://doi.org/10.1107/S0909049512039118
  13. Hinebaugh J, Lee J, and Bazylak A (2012) Visualizing liquid water evolution in a PEM fuel cell using synchrotron X-ray radiography. J. Electrochem. Soc. 159, F826-F830. https://doi.org/10.1149/2.054212jes
  14. Hoogers G (2003) Fuel Cell Technology Handbook (CRC Press LLC, Boca Raton, FL).
  15. Kitahara T, Konomi T, and Nakajima H (2010) Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells. J. Power Sources 195, 2202-2211. https://doi.org/10.1016/j.jpowsour.2009.10.089
  16. Kruger P, et al. (2009) In situ Visualization of Liquid Water Formation and Transport Processes in PEM Fuel Cells Meeting Abstract - Electrochemical Society 902: p. 850.
  17. Kruger P, et al. (2011) Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J. Power Sources 196, 5250-5255. https://doi.org/10.1016/j.jpowsour.2010.09.042
  18. Lange A, et al. (2010) Reconstruction of limited CT data of fuel cell components using DIRECTT. J. Power Sources 196, 5293-5298.
  19. Le A D and Zhou B (2009) Fundamental understanding of liquid water effects on the performance of a PEMFC with serpentine-parallel channels. Electrochim. Acta 54, 2137-2154. https://doi.org/10.1016/j.electacta.2008.10.029
  20. Litster S, Sinton D, and Djilali N (2006) Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers. J. Power Sources 154, 95-105. https://doi.org/10.1016/j.jpowsour.2005.03.199
  21. Maier W, et al. (2012) Correlation of synchrotron X-ray radiography and electrochemical impedance spectroscopy for the investigation of HTPEFCs. J. Electrochem. Soc. 159, F398-F404. https://doi.org/10.1149/2.024208jes
  22. Manke I, et al. (2008) Characterization of water exchange and twophase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography. Appl. Phys. Lett. 92, 244101. https://doi.org/10.1063/1.2946664
  23. Manke I, et al. (2010) In situ synchrotron X-ray radiography investigations of water transport in PEM fuel cells. Fuel Cells. 10, 26-34.
  24. Manke I, et al. (2011) Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography. Appl. Phys. Lett. 90, 1-3.
  25. Markotter H, et al. (2012) Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks. J. Power Sources 219, 120-125. https://doi.org/10.1016/j.jpowsour.2012.07.043
  26. Markotter H, et al. (2012) Visualization of the water distribution in perforated gas diffusion layers by means of synchrotron X-ray radiography. Int. J. Hydrogen Energy 37, 7757-7761. https://doi.org/10.1016/j.ijhydene.2012.01.141
  27. Markotter H, et al. (2013) Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investigated by synchrotron radiography. Electrochem. Commun. 34, 22-24. https://doi.org/10.1016/j.elecom.2013.04.006
  28. Qi Z G and Kaufman A (2002) Improvement of water management by a microporous sublayer for PEM fuel cells. J. Power Sources 109, 38-46. https://doi.org/10.1016/S0378-7753(02)00058-7
  29. Quick C et al. (2009) Characterization of water transport in gas diffusion media. J. Power Sources 190, 110-120. https://doi.org/10.1016/j.jpowsour.2008.07.093
  30. Sasabe T, et al. (2011) Soft X-ray visualization of the liquid water transport within the cracks of micro porous layer in PEMFC. Electrochem. Commun. 13, 638-641. https://doi.org/10.1016/j.elecom.2011.03.033
  31. Vielstich W, Lamm A, and Gasteiger H A (2003) Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 3 (John Wiley & Sons, Chichester).
  32. Wang C Y (2003) Two-phase flow and transport, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, eds. In: Vielstich W, Lamm A, and Gasteiger H A, pp. 337-347, (John Wiley & Sons, Chichester).