DOI QR코드

DOI QR Code

Electric Conduction Mechanisms Study within Zr Doped Mn3O4 Hausmannite Thin Films through an Oxidation Process in Air

  • Said, L. Ben (Unit of Physics of Semiconductor Devices, Faculty of Science of Tunis, Tunis El Manar University) ;
  • Boughalmi, R. (Unit of Physics of Semiconductor Devices, Faculty of Science of Tunis, Tunis El Manar University) ;
  • Inoubli, A. (Laboratory of Physics of Lamellar and Nanomaterial Materials, Hybrids (LPMLNMH), Faculty of Science of Bizerte, Carthage University) ;
  • Amlouk, M. (Unit of Physics of Semiconductor Devices, Faculty of Science of Tunis, Tunis El Manar University)
  • 투고 : 2017.09.08
  • 심사 : 2017.09.12
  • 발행 : 2017.09.30

초록

In this work further optical and electrical investigations of pure and Zr doped $Mn_3O_4$ (from 0 up to 20 at.%) thin films as a function of frequency. First, the refractive index, the extinction coefficient and the dielectric constants in terms of Zr content are reached from transmittance and reflectance data. The dispersion of the refractive index is discussed by means of Cauchy model and Wemple and DiDomenico single oscillator models. By exploiting these results, it was possible to estimate the plasma pulse ${\omega}_p$, the relaxation time ${\tau}$ and the dielectric constant ${\varepsilon}_{\infty}$. Second, we have performed original ac and dc conductivity studies inspired from Jonscher model and Arrhenius law. These studies helped establishing significant correlation between temperature, activation energy and Zr content. From the spectroscopy impedance analysis, we investigated the frequency relaxation phenomenon and hopping mechanisms of such thin films. Moreover, a special emphasis has been putted on the effect of the oxidation in air of hausmannite thin films to form $Mn_2O_3$ ones at $350^{\circ}C$. This intrigue phenomenon which occurred at such temperature is discussed along with this electrical study. Finally, all results have been discussed in terms of the thermal activation energies which were determined with two methods for both undoped and Zr doped $Mn_3O_4$ thin films in two temperature ranges.

키워드

참고문헌

  1. Aghayan M, Zak A K, Behdani M, and Hashim A M (2014) Sol-gel combustion synthesis of Zr-doped $BaTiO_3$ nanopowders and ceramics: Dielectric and ferroelectric studies. Ceramics International 40, 16141-16146. https://doi.org/10.1016/j.ceramint.2014.07.045
  2. Alonso-Dominguez D, Alvarez-Serrano I, Lopez M L, Cuello Gabrie l J, Asensio E, Garcia-Hernandez M, Veiga M L, and Pico C (2016) Characterization of $SrBiMn_{2−x}Ti_xO_6$ perovskites: Local ordering influence on the dielectric and magnetic response. Ceramics International 42, 11889-11900. https://doi.org/10.1016/j.ceramint.2016.04.111
  3. Baghizadeh A, Vieira J M, Amaral J S, Graca M P, Soares M R, Mota D A, and Amaral V S (2015) Crystal structure, magnetic and dielectric behavior of h-$LuMn_xO_{3{\pm}{\delta}}$ ceramics (0.95${\leq}$x${\leq}$1.04). Journal of Magnetism and Magnetic Materials 395, 303-311. https://doi.org/10.1016/j.jmmm.2015.07.082
  4. Bai W, Chen D, Zhang J, Zhong J, Ding M, Shen B, Zhai J, and Ji Z (2016) Phase transition behavior and enhanced electromechanical properties in $(Ba_{0.85}Ca_{0.15})(Zr_xTi_{1−x})O_3$ lead-free piezoceramics. Ceramics International 42, 3598-3608. https://doi.org/10.1016/j.ceramint.2015.11.023
  5. Belgacem S and Bennaceur R (1990) Proprietes optiques des couches minces de $SnO_2$ et $CuInS_2$ airless spray. Rev. Phys. Appl. 25, 1245. https://doi.org/10.1051/rphysap:0199000250120124500
  6. Biju V and Khadar M A (2003) Dielectric properties of nanostructured nickel oxide. Journal of Materials Science 38, 4055-4063. https://doi.org/10.1023/A:1026131103898
  7. Bose V C and Biju V (2015a) Optical, electrical and magnetic properties ofnanostructured $Mn_3O_4$ synthesized through a facile chemical route. Physica E 66, 24-32. https://doi.org/10.1016/j.physe.2014.09.020
  8. Bose V C and Biju V (2015b) Defect dependent optical, electrical and magnetic properties of nanostructured $Mn_3O_4$. Superlattices and Microstructures 88, 287-298. https://doi.org/10.1016/j.spmi.2015.09.019
  9. Boukhachem A, Ziouche A, Amor M B, Kamoun O, Zergoug M, MaghraouiMeherzi H, Yumak A, Boubaker K, and Amlouk M (2016) Physical investigations on perovskite LaMnO3-d sprayed thin films for spintronic applications. Materials Research Bulletin 74, 202-211. https://doi.org/10.1016/j.materresbull.2015.10.003
  10. Caglara Y, Ilican S, and Caglar M (2007) Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous $SnO_2$ thin films. Eur. Phys. J. B 58, 251-256. https://doi.org/10.1140/epjb/e2007-00227-y
  11. Chang Y Q, Yu D P, Long Y, Xu J, Luo X H, and Ye R C (2005) Large-scale fabrication of single-crystalline $Mn_3O_4$ nanowires via vapor phase growth. J. Crystal Growth 279, 88-92. https://doi.org/10.1016/j.jcrysgro.2005.01.084
  12. DiDomenico M, Eibschütz M, Guggenheim H J, and Camlibel I (1969) Dielectric behavior of ferroelectric $BaMF_4$ above room temperature. Solid State Comm. 7, 1119-1122. https://doi.org/10.1016/0038-1098(69)90497-9
  13. Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, and Wang F (2013) Enhanced supercapacitor performance of $Mn_3O_4$ nanocrystals by doping transition-metal ions. ACS Appl. Mater. Inter. 5, 9508-9516. https://doi.org/10.1021/am402257y
  14. Dridi R, Saafi I, Mhamdi A, Matri A, Yumak A, Haj Lakhdar M, Amlouk A, Boubaker K, and Amlouk M (2015) Structural, optical and AC conductivity studies on alloy ZnO-$Zn_2SnO_4$ (ZnO-ZTO) thin films. Journal of Alloys and Compounds 634, 179-186. https://doi.org/10.1016/j.jallcom.2015.02.009
  15. Funke K (1993) Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111. https://doi.org/10.1016/0079-6786(93)90002-9
  16. Gogoi P, Kumar T S, Sharma P, and Pamu D (2015) Structural, optical, dielectric and electrical studies on RF sputtered nanocrystalline Zr doped $MgTiO_3$ thin films. Journal of Alloys and Compounds 619, 527-537. https://doi.org/10.1016/j.jallcom.2014.09.077
  17. Grundy A N, Hallstedt B, and Gauckler L J (2003) Assessment of the Mn-O system. Journal of Phase Equilibria 24, 21-39.
  18. Gund G S, Dubal D P, Patil B H, Shinde S S, and Lokhande C D (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/$Mn_3O_4$ composite for high performance supercapacitors. Electrochim. Acta 92, 205-215. https://doi.org/10.1016/j.electacta.2012.12.120
  19. Herodotou S, Treharne R E, Durose K, Tatlock G J, and Potter R J (2015) The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition. Materials 8, 7230-7240. https://doi.org/10.3390/ma8105369
  20. Hou Q, Zhao C, and Xu Z (2016) Effect of Zr doping on the electrical and optical properties of ZnO. Chemical Physics Letters 658, 336-342. https://doi.org/10.1016/j.cplett.2016.06.075
  21. Huang S, Wang Y, Wang Z, Zhao K, Shi X, Lai X, and Zhang L (2015) Structural, magnetic and magnetodielectric properties of the $Mn_3O_4$ thin films epitaxially grown on $SrTiO_3$ (001) substrates. Solid State Comm. 212, 25-29. https://doi.org/10.1016/j.ssc.2015.04.004
  22. Jacob K T, Kumar A, Rajitha G, and Waseda Y (2011) Thermodynamic data for $Mn_3O_4$, $Mn_2O_3$ and $MnO_2$. High Temp. Mater. Proc. 30, 459-472.
  23. Jain A, Saroha R, Pastor M, Jha A K, and Panwar A K (2016) Effect of sintering duration on structural and electrical properties of $Ba_{0.9}Sr_{0.1}Ti_{0.96}Zr_{0.0}4O_3$ solid solution. Current Applied Physics 16, 859-866. https://doi.org/10.1016/j.cap.2016.04.022
  24. Jha A, Thapa R, and Chattopadhyay K K (2012) Structural transformation from $Mn_3O_4$ nanorods to nanoparticles and band gap tuning via Zn doping. Mater. Res. Bull. 47, 813. https://doi.org/10.1016/j.materresbull.2011.11.057
  25. Jin G, Xiao X, Li S, Zhao K, Wu Y, Sun D, and Wang F (2015) Strongly coupled graphene/$Mn_3O_4$ composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689-698. https://doi.org/10.1016/j.electacta.2015.08.032
  26. Juma A, Acik I O, Oluwabi A T, Mere A, Mikli V, Danilson M, and Krunks M (2016) Zirconium doped $TiO_2$ thin films deposited by chemical spray pyrolysis. Applied Surface Science 387, 539-545. https://doi.org/10.1016/j.apsusc.2016.06.093
  27. Khumpaitool B and Khemprasit J (2014). Effect of calcining temperature on structural and dielectric properties of $Li_{0.30}Cr_{0.02}Ni_{0.68}O$ ceramics. Journal of Alloys and Compounds 587, 211-216. https://doi.org/10.1016/j.jallcom.2013.10.200
  28. Larbi T, Amara A, Said L B, Ouni B, Lakhdar M H, and Amlouk M (2015a) A study of optothermal and AC impedance properties of Cr-doped $Mn_3O_4$ sprayed thin film. Materials Research Bulletin 70, 254-262. https://doi.org/10.1016/j.materresbull.2015.04.050
  29. Larbi T, Lakhdar M H, Amara A, Ouni B, Boukhachem A, Mater A, and Amlouk M (2015b) Nickel content effect on the microstructural, optical and electrical properties of p-type $Mn_3O_4$ sprayed thin films. Journal of Alloys and Compounds 626, 93-101. https://doi.org/10.1016/j.jallcom.2014.11.088
  30. Larbi T, Ouni B, Boukhachem A, Boubaker K, and Amlouk M (2014) Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film. Materials Research Bulletin 60, 457-466. https://doi.org/10.1016/j.materresbull.2014.09.007
  31. Lee K J, Iguchi A, and Iguchi E (1993) Polaronic conduction of electrons in ${\alpha}$-$Mn_3O_4$ slightly doped with Li. J. Phys. Chem. Solids 54, 975. https://doi.org/10.1016/0022-3697(93)90001-8
  32. Lin K C, Juan P C, Liu C H, Wang M C, and Chou C H (2015) Leakage current mechanism and effect of $Y_2O_3$ doped with Zr high-K gate dielectrics. Microelectronics Reliability 55, 2198-2202. https://doi.org/10.1016/j.microrel.2015.07.045
  33. Liu J Y, Ng Y H, Okatan M B, Amal R, Bogle K A, and Valanoor N (2014) Interface-dependent Electrochemical Behavior of Nanostructured Manganese (IV) Oxide ($Mn_3O_4$). Electrochim. Acta 130, 810-817. https://doi.org/10.1016/j.electacta.2014.03.103
  34. Luo Y, Yang T, Li Z, Xiao B, and Zhang M (2016) High performance of $Mn_3O_4$ cubes for supercapacitor applications. Materials Letters 178, 171-174. https://doi.org/10.1016/j.matlet.2016.04.142
  35. Lv M, Xiu X, Pang Z, Dai Y, Ye L, Cheng, C, and Han S (2008) Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Film. 516, 2017-2021. https://doi.org/10.1016/j.tsf.2007.06.173
  36. Mahajan S, Haridas D, Ali S T, Munirathnam N R, Sreenivas K, Thakur O P, and Prakash C (2014) Investigation of conduction and relaxation phenomena in $BaZr_xTi_{1−x}O_3$ (x=0.05) by impedance spectroscopy. Physica B 451, 114-119. https://doi.org/10.1016/j.physb.2014.06.035
  37. Manoharan C, Jothibas M, Jeyakumar S J, and Dhanapandian S (2015) Structural, optical and electrical properties of Zr-doped $In_2O_3$thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 145, 47-53. https://doi.org/10.1016/j.saa.2015.02.099
  38. Mardare D and Hones P (1999) Optical dispersion analysis of $TiO_2$ thin films based on variable-angle spectroscopic ellipsometry measurements. Mater. Sci. Eng. B, 68, 42. https://doi.org/10.1016/S0921-5107(99)00335-9
  39. Mohamed J J, Salim S A S, and Ahmad Z A (2016) Comparative study on the effect of $Zr^{4+}$ and $Ca^{2+}$ doping on the properties of NiO. Procedia Chemistry 19, 949-954. https://doi.org/10.1016/j.proche.2016.03.140
  40. Mrabet C, Amor M B, Boukhachem A, Amlouk M, and Manoubi T (2016) Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceramics International 42, 5963-5978. https://doi.org/10.1016/j.ceramint.2015.12.144
  41. Mrabet C, Kamoun O, Boukhachem A, Amlouk M, and Manoubi T (2015) Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped Zn. Journal of Alloys and Compounds 648, 826-837. https://doi.org/10.1016/j.jallcom.2015.07.009
  42. Myung J, Shin TH, Huang X, Carins G, and Irvine J T S (2015) Enhancement of redox stability and electrical conductivity by doping various metals on ceria, $Ce_{1−x}MxO_{2−{\delta}}$ (M = Ni, Cu, Co, Mn, Ti, Zr). International Journal of Hydrogen Energy 40, 12003-12008. https://doi.org/10.1016/j.ijhydene.2015.05.029
  43. Nicon C, Soares M R N, Costa L C, Monteiro T, and Graca M P F (2016) Effects of Zr and Ga doping on the stoichiometry and properties of niobium oxides. Ceramics International 42, 1688-1697. https://doi.org/10.1016/j.ceramint.2015.09.124
  44. Ouni B, Boukhachem A, Dabbous S, Amlouk A, Boubaker K, and Amlouk M (2010) Some transparent semi-conductor metal oxides: Comparative investigations in terms of Wemple-DiDomenico parameters, mechanical performance and Amlouk-Boubaker optothermal expansivity. Materials Science in Semiconductor Processing 13, 281-287. https://doi.org/10.1016/j.mssp.2010.12.008
  45. Pang L-X, Zhou D, Liu W-G, and Yue Z-X (2016) Phase evolution and dielectric properties of fluorite-type $Bi_3(Nb_{0.9}M_{0.1})O_{7+{\delta}}$ ceramics (M=Ti, Zr, Sn, W, ${\delta}$=${\pm{$0.05). Journal of Alloys and Compounds 674, 89-92. https://doi.org/10.1016/j.jallcom.2016.02.211
  46. Park W-D (2012) Optical constants and dispersion parameters of CdS thin film prepared by chemical bath deposition. Transactions on Electrical and Electronic Materials 13, 196-199. https://doi.org/10.4313/TEEM.2012.13.4.196
  47. Paul G K, Bandyopadhyay S, Sen S K, and Sen S (2003) Structural, optical and electrical studies on sol-gel deposited Zr doped ZnO films. Mater. Chem. Phys. 79, 71-75. https://doi.org/10.1016/S0254-0584(02)00454-6
  48. Rouahi A, Challali F, Dakhlaoui I, Vallee C, Salimy S, Jomni F, Yangui B, Besland M P, Goullet A, and Sylvestre A (2016) Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications. Thin Solid Films 606, 127-132. https://doi.org/10.1016/j.tsf.2016.03.047
  49. Said L B, Inoubli A, Bouricha B, and Amlouk M (2017) High Zr doping effects on the microstructural and optical properties of $Mn_3O_4$ thin films along with ethanol sensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 171, 487-498. https://doi.org/10.1016/j.saa.2016.08.014
  50. Saini J, Kumar R, Rajput J K, and Kumar A (2016) Study of $ZrxZn_{0.5−x}Ni_{0.5}Fe_2O_4$ 0${\leq}$x${\leq}$0.25: synthesis, structural, magnetic and electrical properties. Journal of Magnetism and Magnetic Materials 401, 770-774. https://doi.org/10.1016/j.jmmm.2015.10.135
  51. Salah M, Azizi S, Boukhachem A, Khaldi C, Amlouk M, and Lamloumi J (2017) Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films. Journal of Materials Science 52, 10439-10454. https://doi.org/10.1007/s10853-017-1218-z
  52. Saputra E, Muhammad S, Sun H, Ang H-M, Tade M O, and Wang S (2013) A comparative study of spinel structured $Mn_3O_4$, $Co_3O_4$ and $Fe_3O_4$ nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of Colloid and Interface Science 407, 467-473. https://doi.org/10.1016/j.jcis.2013.06.061
  53. Shanmugam V, Sridarane R, Deviannapoorani C, Kashyap R, and Murugan R (2014) Influence of zirconium doping on structure, microstructure, dielectric and impedance properties of strontium bismuth niobate ceramics. Current Applied Physics 14, 407-414. https://doi.org/10.1016/j.cap.2013.12.020
  54. Sharma J K, Srivastava P, Ameen S, Akhtar M S, Singh G, and Yadava S (2016) Azadirachta indica plant-assisted green synthesis of $Mn_3O_4$ nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior. Journal of Colloid and Interface Science 472, 220-228. https://doi.org/10.1016/j.jcis.2016.03.052
  55. Slassi A, lakouari N, Ziat Y, Zarhri Z, Fakhim Lamrani A, Hlil E K, and Benyoussef A (2015) Ab initio study on the electronic, optical and electrical properties of Ti-, Sn- and Zr-doped ZnO. Solid State Communications 218, 45-48. https://doi.org/10.1016/j.ssc.2015.06.010
  56. Sun L, Wang Z, Hao W, Cao E, Zhang Y, and Peng H (2015) Influence of Zirconium doping on microstructure and dielectric properties of $CaCu_3Ti_4O_{12}$ synthesized by the sol-gel method. Journal of Alloys and Compounds 651, 283-289. https://doi.org/10.1016/j.jallcom.2015.08.111
  57. Sun Z, Pu Y, Dong Z, Hu Y, Liu X, and Wang P (2014) Effect of $Zr^{4+}$ content on the $T_C$ range and dielectric and ferroelectric properties of $BaZr_xTi_{1−x}O_3$ ceramics prepared by microwave sintering. Ceramics International 40, 3589-3594. https://doi.org/10.1016/j.ceramint.2013.09.069
  58. Tang X G, Chew K H, and Chan H L W (2004) Diffuse phase transition and dielectric tunability of $Ba(Zr_yTi_{1−y})O_3$ relaxor ferroelectric ceramics. Acta Mater. 52, 5177-5183. https://doi.org/10.1016/j.actamat.2004.07.028
  59. Thongbai P, Jumpatam J, Putasaeng B, Yamwong T, and Maensiri S (2014) Microstructural evolution and Maxwell-Wagner relaxation in $Ca_2Cu_2Ti_{4−x}Zr_xO_{12}$: The important clue to achieve the origin of the giant dielectric behavior. Materials Research Bulletin 60, 695-703. https://doi.org/10.1016/j.materresbull.2014.09.045
  60. Ulutas C, Erken O, Gunes M, and Gumus C (2016) Effect of annealing temperature on the physical properties of $Mn_3O_4$ thin film prepared by chemical bath deposition. Int. J. Electrochem. Sci. 11, 2835-2845.
  61. Wang F, Lv M, Pang Z, Yang T, Dai Y, and Han S (2008) Theoretical study of structural, optical and electrical properties of zirconium-doped zinc oxide. Applied Surface Science 254, 6983-6986. https://doi.org/10.1016/j.apsusc.2008.05.296
  62. Wang F, Wu H Q, Lin Z T, Han S Y, Wang D, Xue Y, Sun Y L, Sun J, and Li B (2010) Shape evolution of Cu-doped $Mn_3O_4$ spinel microcrystals: influence of copper content. Mater. Res. Bull. 45, 1567. https://doi.org/10.1016/j.materresbull.2010.07.022
  63. Wang Z, Wang Z, Peng W, Guo H, and Li X (2014) An improved solid-state reaction to synthesize Zr-doped $Li_4Ti_5O_{12}$ anode material and its application in $LiMn_2O_4/Li_4Ti_5O_{12}$ full-cell. Ceramics International 40, 10053-10059. https://doi.org/10.1016/j.ceramint.2014.04.011
  64. Wei T, Wang X D, Zhao C Z, Zhang T B, Yang F M, Wang W B, and Ma Y J (2015) Enhanced up-conversion photoluminescence and dielectric properties of Er- and Zr-codoped strontium bismuth niobate ceramics. Ceramics International 41, 12364-12370. https://doi.org/10.1016/j.ceramint.2015.06.067
  65. Wei W, Cui X, Chen W, and Ivey D G (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697. https://doi.org/10.1039/C0CS00127A
  66. Wemple S H and DiDomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B, 3, 1338. https://doi.org/10.1103/PhysRevB.3.1338
  67. Wypych A, Bobowska I, Tracz M, Opasinska A, Kadlubowski S, KrzywaniaKaliszewska A, Grobelny J, and Wojciechowski P (2014) Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. Journal of Nanomaterials 124814, 9.
  68. Xu G, Shi J, Dong W, Wen Y, Min X, and Tang A (2015) One-pot synthesis of a Ni-$Mn_3O_4$ nanocomposite for supercapacitors. Journal of Alloys and Compounds 630, 266-271. https://doi.org/10.1016/j.jallcom.2015.01.067
  69. Xu H Y, Le Xu S, Li X D, Wang H, and Yan H (2006) Chemical bath deposition of hausmannite $Mn_3O_4$ thin films. Appl. Surf. Sci. 252, 4091-4096. https://doi.org/10.1016/j.apsusc.2005.06.011
  70. Yadav A A, Jadhav S N, Chougule D M, Patil P D, Chavan U J, and Kolekar Y D (2016) Spray deposited Hausmannite $Mn_3O_4$ thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochimica Acta 206, 134-142. https://doi.org/10.1016/j.electacta.2016.04.096
  71. Yang X, He Y, Bai Y, Zhang J, Kang L, Xu H, Shi F, Lei Z, and Liu Z-H (2016) $Mn_3O_4$ nanocrystalline/graphene hybrid electrode with high capacitance. Electrochimica Acta 188, 398-405. https://doi.org/10.1016/j.electacta.2015.12.024
  72. Zhang B, Dong X, Xu X, Zhao P, and Wu J (2008) Characteristics of zirconium-doped indium tin oxide thin films deposited by magnetron sputtering. Solar Energy Materials & Solar Cells 92, 1224-1229. https://doi.org/10.1016/j.solmat.2008.04.019
  73. Zhao Y, Ran W, Xiong D-B, Zhang L, Xu J, and Gao F (2014) Synthesis of Sn-doped $Mn_3O_4$/C nanocomposites as supercapacitor electrodes with remarkable capacity retention. Mater. Lett. 118, 80-83. https://doi.org/10.1016/j.matlet.2013.12.061
  74. Zhen M, Zhang Z, Ren Q, and Liu L (2016) Room-temperature synthesis of ultrathin $Mn_3O_4$ nanosheets as anode materials for lithium-ion batteries. Materials Letters 177, 21-24. https://doi.org/10.1016/j.matlet.2016.04.156
  75. Zhi Y, Guo R, and Bhalla A S (2000) Dielectric behavior of $Ba(Ti_{1−x}Zr_x)O_3$ $Ba(Ti_{1−x}Zr_x)O_3$ single crystals. J. Appl. Phys. 88, 410. https://doi.org/10.1063/1.373674