
Copyright 2017. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 11, No. 3, September 2017, pp. 92-99

A Data-Consistency Scheme for the Distributed-Cache Storage
of the Memcached System
Jianwei Liao

College of Computer and Information Science, Southwest University of China, Beibei, Chongqing, China

liaojianwei@il.is.s.u-tokyo.ac.jp

Xiaoning Peng*

College of Computer Science and Engineering, Huaihua University, Huaihua, Hunan, China

hhpxn@163.com

Abstract
Memcached, commonly used to speed up the data access in big-data and Internet-web applications, is a system software

of the distributed-cache mechanism. But it is subject to the severe challenge of the loss of recently uncommitted updates

in the case where the Memcached servers crash due to some reason. Although the replica scheme and the disk-log-based

replay mechanism have been proposed to overcome this problem, they generate either the overhead of the replica syn-

chronization or the persistent-storage overhead that is caused by flushing related logs. This paper proposes a scheme of

backing up the write requests (i.e., set and add) on the Memcached client side, to reduce the overhead resulting from

the making of disk-log records or performing the replica consistency. If the Memcached server fails, a timestamp-based

recovery mechanism is then introduced to replay the write requests (buffered by relevant clients), for regaining the lost-

data updates on the rebooted Memcached server, thereby meeting the data-consistency requirement. More importantly,

compared with the mechanism of logging the write requests to the persistent storage of the master server and the server-

replication scheme, the newly proposed approach of backing up the logs on the client side can greatly decrease the time

overhead by up to 116.8% when processing the write workloads.

Category: Cloud Computing / High Performance Computing

Keywords: Memcached; Data consistency; Buffering logs on client; Overhead; Timestamp-based recovery

I. INTRODUCTION

Memcached is a general-purpose distributed-memory

caching system [1]. It adopts a typical distributed client-

server architecture, and commonly used to save the

requisite time for data retrieval, as it caches the frequently

accessed data and objects in the memory of the Memcached

servers [2, 3]. Specifically, the system consists of the

Memcached servers (Memcached instances) that are for

data-saving, and client libraries that offer application

programming interfaces (APIs) to applications over a

network or local file socket connection for the server

interactions [4]. In fact, the great popularity of Memcached

(or with certain application-specific modifications) means

that it has been employed by many Web service-delivery

companies including Facebook [3], Twitter [5], and

YouTube [6] to decrease the latency in providing Web or

database data to consumers.

Received 29 August 2017; Revised 08 September 2017; Accepted 10 September 2017

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2017.11.3.92 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System

Jianwei Liao and Xiaoning Peng 93 http://jcse.kiise.org

Memcached, however, stores all of the data of key–

value pairs in the non-persistent memory by design, so

that in the event of a failure, all of the stored data become

unavailable [7]. That is, it fails to meet the semantic of

data consistency, and this means that all read operations

must return the data from the latest completed write

operation [8]. Although Memcached can asynchronously

flush memory data to the persistent storage of the servers,

this not only causes a system-performance degradation,

but the risk of losing uncommitted in-memory data is also

present. To overcome this problem, the feature of data

replication has been introduced to Memcached to achieve

an enhanced data throughput, as well as a high availability,

to ensure data consistency; such implementations include

Couchbase [9], R-Memcached [10], and repcached [11].

These approaches, however, require handling the issue of

data consistency at the expense of the synchronization

latency, especially in cases where considerable data-update

requests are made. In addition, many distributed file

systems employ logging- or journaling-update operations,

so a complete, up-to-date data snapshot can be yielded by

resorting to the logs or journals. To be specific, because

these logs are stored in the nonvolatile storage devices,

when the former active server has unexpectedly crashed,

it is possible to restore the lost uncommitted changes (in-

memory) by replaying them. However, logging all of the

update operations to the disk will definitely result in a

time latency on the server side.

For the purpose of reducing the overhead caused by

ensuring the data-consistency semantic, a scheme of

backing up the write requests (i.e., add and set requests)
on the side of the Memcached client for the benefit of a

possible future data recovery is proposed in this paper. To

this end, besides sending the requests to the server, the

Memcached client backs up the update requests in the

memory as well. Alternatively, the latest data are supposed

to be asynchronously flushed to the disk, e.g., a database,

thereby leading to the clients’ removal of the related

buffered logs. If the master Memcached server becomes

unavailable, the rebooted server can replay the cached

write requests that are forwarded by the clients based on a

snapshot of the flushed data to recover the lost updates.

In brief, this paper makes the following two contributions:
● Introduction of a scheme comprising the backing up

of the write requests on the Memcached client side.

For decreasing the overhead that results from ensuring

data consistency, such as the write-request logging on

the disk storage of the master server and the synchro-

nization of the replicas, buffering update requests in

the memory of the Memcached client side is introduced.

Specifically, the Memcached client side buffers the

write requests until the relevant data changes have

been flushed to the disk of the Memcached server. In

fact, these logged requests are supposed to be replayed

to restore the (in-memory) lost updates in the case of

a failure of the master server.

● Presentation of a timestamp-based data-recovery

technique. This approach seeks to efficiently regain

the lost-data changes on the rebooted Memcached

server by replaying the cached write requests that are

forwarded by the clients on the basis of the latest

flushed-data snapshot. Moreover, by following a time

order, this mechanism can guarantee that only the

recently uncommitted write requests will be replayed.

The rest of this paper is structured as follows: Section

II discusses the background knowledge of Memcached,

as well as the related works about the replication of

Memcached and the log-based replay for the recovery of

the lost data; the specifications of the proposed scheme

are presented in Section III; Section IV describes the

evaluation methodology and reports the relevant results;

and lastly, this paper is concluded in Section V.

II. BACKGROUND AND RELATED WORKS

This section introduces the background knowledge

regarding Memcached and its replication feature, as well

as the typical data-consistency approaches for which the

logged requests are replayed.

A. Memcached and Replication for Consistency

As discussed, Memcached is an open-source, multithreaded,

distributed, key-value caching software system that is

widely adopted for the purposes of delivering software-

as-a-service (SaaS) applications and decreasing the

service latency and network traffic to the database or

computational servers [7]. Memcached deals with items

comprising metadata, i.e., a key and a value. Specifically,

these items are managed by using a number of unique

data structures, such as a Slab Allocation for storage, an

Association Array for quick access, and an LRU (Least

Recently Used) list for an eviction from the cache [12].

As previously mentioned, nevertheless, the native

Memcached does not provide an improved data availability,

since the data-replication characteristic is not supported;

this also indicates that the cached data becomes unreachable

with the failure of the Memcached-server node, thereby

resulting in a loss of the in-memory changes [10].

Accordingly, the aim of numerous research proposals is the

incorporation of the replication functionality to the original

Memcached to achieve an improved data availability.

Specifically, repcached is a middleware for Memcached

that utilizes the master–slave replication solution to address

the single point of failure problem in Memcached [11]. In

order to simplify the data synchronization, the write

operations can merely be processed in the master node of

repcached, and by default, each data item can comprise

only two replicas. More importantly, repcached employs

the manner of SYNC synchronization to maintain the

strong data consistency of the replicas. All of the write

Journal of Computing Science and Engineering, Vol. 11, No. 3, September 2017, pp. 92-99

http://dx.doi.org/10.5626/JCSE.2017.11.3.92 94 Jianwei Liao and Xiaoning Peng

updates must be broadcast to any other relevant server

nodes with the same data copy, and this definitely results

in a longer write latency.

Lu et al. [10] proposed R-Memcached to enable data

replication in Memcached. Different from repcached, R-

Memcached offers three protocols for the retention of the

cache consistency in a variety of application contexts. It

cannot, however, eliminate the data-loss risk in the case

where the master Memcached server becomes unresponsive,

as the latest data are asynchronously flushed to a database,

even though the data availability and reliability have been

improved to some extent. Ristov et al. [12] proposed the

Memcached-based cache system called as LogMemcached

that supports state replication via the Remote Direct

Memory Access (RDMA) [13] to offer an increased

systemic availability and improved failure resilience.

In addition, Cocytus takes advantage of a hybrid repli-

cation scheme to yield both efficiency and availability for

Memcached [14]. Memcachedb [15] and Couchbase [9]

are Memcached-compatible distributed key-value storage

systems that are designed for the persistent storage, and

they can offer a high-availability of data storage with a

replication functionality; but, both systems may cause a

considerable synchronization overhead due to flushing the

cached data to the persistent storage.

All of the previously mentioned replication implemen-

tations either employ the SYNC-synchronization scheme

to maintain a strong data consistency that then causes a

synchronization latency, or use the ASYNC-synchronization

scheme to yield an improved systemic performance, but

this is at the cost of a loss of certain data updates. In brief,

none of the existing replication schemes with an acceptable

overhead can ensure a strong data consistency without

update losses.

B. Logging Schemes for the Restoration of
Lost Data

The traditional approach of the logging of update

requests means it is necessary to flush such logs to the

nonvolatile storage before responding to the client who

issued the request. This kind of mechanism is quite

straightforward and can ensure a proper data consistency,

as it can recover the lost data by simply replaying the

recorded logs on the basis of the previous consistent state.

A holding of the data in the main memory allows the

in-memory databases to significantly decrease the I/O

cost of the transaction processing. To guarantee data

consistency, however, the in-memory systems need to

flush the log to the nonvolatile storage, which incurs a

substantial number of I/Os [16]. Although many logging

approaches have been proposed, including command

logging [17] and advanced logging [16, 18], for the

purpose of reducing the number of logging messages, the

disk I/O operations cannot be avoided, and this definitely

imposes negative effects onto the server machine.

Besides, a major part of the conventional distributed

and parallel file systems such as the Gfarm [19] and

Google file systems [20] employ this kind of mechanism

to ensure data consistency. The disk logs can be redone to

restore the lost data updates if the active server crashes

unexpectedly.

Thus, for the purpose of decreasing the overhead that

is caused by a retention of data consistency during the use

of the conventional replication and logging schemes, a

novel approach for Memcached is proposed here for the

achievement of a data-consistency retention with a

preferable overhead.

Instead of flushing the update logs to the nonvolatile

storage, the clients of Memcached are responsible for

buffering their sent update requests, and these requests

cannot be removed until the relevant changes have been

flushed to the disk on the Memcached servers. In the case

of a server failure, these buffered logs are supposed to be

forwarded to the rebooted Memcached server to recover

the lost in-memory data updates through replaying them.

III. SPECIFICATIONS OF THE SYSTEM DESIGN

This section illustrates the specifications of the proposed

data-consistency scheme for Memcached. First, a high-

level architectural overview of Memcached is shown.

Then, the details of the backing-up of the update requests

on the side of the Memcached clients will be described.

Finally, the algorithm of the timestamp-based recovery

that is employed to recover the lost updates is presented

with additional information.

A. High-Level Systemic Overview of Memcached

Memcached consists of the following two components:

client component and server component. That is, the

Memcached server manages the cached data with key and

value pairs. The Memcached-client component is normally

deployed in the application-server node, and responsible

for communicating with the Memcached server to obtain

the cached data, and this occurs after the receipt of the

data request from the application.

Fig. 1 shows the functional overview of Memcached

that is deployed for an Internet web application. Specifically,

there are typically four steps in the workflow of reading a

data item, between sending a data request and obtaining

the needed data:

1. The web application issues a data request that will

be intercepted by the Memcached client. Then, the

Memcached client uses consistent hashing to calculate

the location of the pair that is cached at the server

side (i.e., the bucket, as well as the IP and the port of

the server) and corresponds to the key in the request.

2. After that, the client sends a get request to the related
Memcached server to obtain the desired data value.

A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System

Jianwei Liao and Xiaoning Peng 95 http://jcse.kiise.org

3. The Memcached server is able to respond to the

client with the requisite value by accessing the

cached data item, instead of reading the data from

the nonvolatile storage.

4. Lastly, the Memcached client forwards the received

data to the web application for an eventual response

from the end-users.

B. Backing up the Write Requests on the
Client Side

Logging write requests (i.e., set and add operations
in Memcached) to the persistent storage of the master server

is a widely used method to maintain data consistency.

From another perspective, if the master server crashes for

any reason, the logged write requests will be replayed to

recover the lost updates from a previous consistent state

on the rebooted master server. But, it must record the logs

corresponding to every write request to the disk, resulting

in extra disk I/O operations.

To address this problem, a novel scheme to buffer the

write requests on the client side of Memcached is introduced

here; that is, a unique, incrementing timestamp is introduced

on the side of the Memcached server to identify a specific

write request to the data item. As a result, the server can

respond to the clients with a normal acknowledgment

message, as well as a particular timestamp that is composed

of 8 bytes by default. Therefore, the client can generate

the corresponding log of the write request that can be

recognized by its timestamp and the key. In contrast to a

flushing of the update logs to the disk, the buffering of these

logs on the client side can greatly shorten the write latency,

and Section IV will present more results on this topic.

Fig. 2 illustrates an example of an interactive workflow

between a Memcached server and a client during the

processing of a write request (e.g., a set request). Different
from the interactive procedure in the native Memcached,

the server responds to the client with not only the data

value in Step 3, but also a relevant timestamp of ts0. On

the other side, the client creates an in-memory log to

back up this set request after it receives a STORED
acknowledgment message from the server, as shown in

Step 4. These backed-up logs are actually supposed to be

used for the possible data recovery when the server with

the latest data version crashes at a future time. To minimize

the number of logs with respect to every data item, the

proposed mechanism only keeps the latest log. Namely,

the maximum of one buffered log is related to each key-

identified data item.

In the case where the master server has committed the

in-memory changes to the persistent-storage system, e.g.,

a disk file system, the relevant buffered logs will be

removed by the client. This process is demonstrated in

Steps 5–7, as shown in Fig. 2.

In fact, maintaining write requests in the memory of

clients intends to decrease the time overhead caused by

making disk logs for the requests. Even though the Mem-

cached clients may access the same server by following

an interleaved mode, and the clients only manage the

uncommitted update logs sent by themselves, the newly

proposed scheme can satisfy the correctness requirement.

This is because the Memcached server can sort all of

the uncommitted write requests, which are forwarded by

a variety of clients, by referring to their timestamps.

Consequently, the server can obtain a time-ordered list of

uncommitted update requests, which is the same as the

conventional disk-logging scheme on the server side.

Moreover, to effectively manage the buffered logs on

the side of the Memcached clients, the logs are managed

as a linked list, which can be flexibly adjusted according

to the different operations (e.g., insert and remove) on the

log records. Fig. 3 demonstrates the data structure for

storing the recorded logs on the client side. The element

in the Key List array indicates a key that has been

Fig. 1. High level system overview of Memcached. Fig. 2. Backing up write requests on the Memcached client.

Journal of Computing Science and Engineering, Vol. 11, No. 3, September 2017, pp. 92-99

http://dx.doi.org/10.5626/JCSE.2017.11.3.92 96 Jianwei Liao and Xiaoning Peng

requested by the application on the client side, and this

facilitates a quick location of the log record for which a

key referral is used. More importantly, another (blue) link

relationship that exists among the logs links the logs

according to their timestamps.

As seen in Fig. 3, the linked list can be tuned efficiently

if there is a new record, or if the buffered records are

supposed to be removed. For instance, a data-structure

adjustment case will be performed to remove the relevant

nodes in the list when the in-memory changes that occur

prior to the ts9 timestamp have been flushed to the disk.

Then, except for the log belonging to Key 3, the other

relevant buffered logs are supposed to be removed from

the list.

C. Timestamp-based Recovery

For the purpose of recovering the uncommitted, in-

memory changes in the case where the Memcached server

has crashed for some reason, a timestamp-based recovery

mechanism is proposed in this study. After the rebooting

of the server, the client may try to communicate with it to

obtain the latest cached data copy. However, the reloaded

cached copies from the disk are likely to be obsolete, as

the latest in-memory versions have been lost due to the

server crash. Therefore, to restore the lost changes, we

have proposed an algorithm of the timestamp-based

recovery, which replays the buffered logs that saved on

the client side.

In fact, to support the newly proposed timestamp-based

recovery approach, Memcached was slightly modified in

terms of the get-processing operations. That is, the client
is supposed to include its retained timestamp of the target

data item (referred with the key) to indicate that the latest

version of the data is desired. On the other side, the server

also keeps an up-to-date timestamp that corresponds to a

cached item; then, it compares the timestamp in the get

request with its retained timestamp, and the cached data will

be responded to in the case where the latter one is not less

than the former one. Otherwise, the server indicates the lost

changes for the cached data, triggering the recovery process.

Fig. 4 shows the Memcached clients forwarding their

buffered write requests to the rebooted server to start the

timestamp-based recovery for the purpose of restoring

the lost updates for the cached data on the server side.

Specifically, in the process of the timestamp-based recovery,

the Memcached clients are supposed to send their cached

logs to the server upon their receipt of the replay-

collaboration request that is sent by the server. Next, the

server organizes the collected logs and sorts them in the

order of the timestamps. The server will subsequently redo

these update requests to regain the lost updates. Eventually,

the goals of the recovery of the uncommitted data and the

retention of data consistency can be satisfied.

IV. EXPERIMENTS AND EVALUATION

This section first describes the experimental platform

that was employed for the evaluation of the proposed

mechanism and its comparison counterparts. It then reports

the experiment results and provides relevant discussions.

Lastly, a summary of the key points of the newly proposed

scheme is presented.

A. Experimental Platform

To conduct the designed experiments, a six-node cluster

was employed. Each node is composed of four CPUs of

the Intel E5410 2.33 G and 4 GB of RAM, and all of the

nodes are connected with a 10-GbE Ethernet. Four nodes

in the cluster were run as servers, and the remaining two

were employed to execute the client processes (threads).

B. Experiment Results

The throughput and the average latency of the proposed

mechanism were tested using Memcached with disk

logging and repcached with only one additional copy for

the cached data. Beyond that, the native Memcached

implementation Baseline was included to show the side-

effects that are caused by different schemes in ensuring

data consistency. Furthermore, evaluations of the recovery

overhead when the proposed timestamp-based recovery

and the conventional approach of the disk-log-based

recovery are employed were conducted.

In the tests, each of the client threads forms 10,000

Fig. 3. Data structure for the management of buffered logs on
the client side.

Fig. 4. Timestamp-based recovery in Memcached after the
server sends a replay collaboration request to all relevant clients.

A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System

Jianwei Liao and Xiaoning Peng 97 http://jcse.kiise.org

open-close connections with the server, so that the server

deals with the set and get requests as different tests but
at the same concurrency. In each request, the key is set as

64 bytes, and the value occupies 64 bytes as well.

1) Average Latency

A measurement of the average latency for the processing

of a read/write operation was performed during the use of

the selected schemes, and Fig. 5 presents the relevant

experiment results.

As seen in Fig. 5(a), repcached needs the least time to

complete a get request, since two servers hold the same

data copy, so it can concurrently satisfy the client threads.

The other three schemes resulted in the read latency

without a noticeable difference, since the read operations

do not influence the consistency of the data semantic.

Besides, it is evident that the newly proposed Client

backup approach requires slightly more time for the

completion of a get request; this is because the client

threads additionally access the log list to obtain the latest

timestamp of the target data item.

A more interesting clue is shown in Fig. 5(b), as it is

regarding an attractive write-latency improvement of up

to 116.8% that is a result of the newly proposed mechanism,

compared with the repcached and the Disk log-based

mechanisms. The reason for this improvement is that, to

ensure data consistency, the latter two approaches are

supposed to either synchronize the write contents to other

replicas or write the update logs to the disk. But, the

newly proposed scheme can also fulfill this requirement

by backing up the logs in the memory of the Memcached

server, which does not cause a discernible time overhead.

2) Transaction Throughput

The transaction throughput metric implies the number

of operations that can be processed per second on the

server side, and the higher transaction throughput indicates

an improved systemic performance. Fig. 6 reports the

statistics on this metric in terms of the evaluation

experiments. In the case of the read-workload processing,

and except for repcached, the other three schemes yielded

nearly the same results, as shown in Fig. 6(a). Furthermore,

similar to the results shown in Fig. 5(b), the proposed

Client backup scheme outperformed the repcached and

Disk log-based mechanisms in the processing of the write

workloads, as shown in Fig. 6(b).

An emphasis was placed on the best performance of

the Memcached baseline when a large amount of write

requests are being handled, but the data consistency is not

ensured here. On the other side, another three schemes

were able to maintain data consistency in the case where

the server has crashed due to some reason.

3) Logging and Recovery Overheads

Because the replication scheme does not require per-

forming data recovery, this section only reports the recovery

overhead regarding the utilization of the timestamp-based

and disk-log-based schemes. In fact, the number of requests

Fig. 5. Time latencies for a get operation (a) and a set operation (b).

Fig. 6. Transactions per second for the get operation (a) and set operation (b).

Journal of Computing Science and Engineering, Vol. 11, No. 3, September 2017, pp. 92-99

http://dx.doi.org/10.5626/JCSE.2017.11.3.92 98 Jianwei Liao and Xiaoning Peng

that need to be redone is a critical factor that affects the

recovery process, regardless of which scheme is used.

Fig. 7 presents the time-consumption total of the data

recovery. As can be seen, more time is required as the

number of update requests is increased, as more time is

required for the collection and replaying of the requests.

More importantly, the newly proposed scheme of the

timestamp-based recovery outperformed the Disk log-

based scheme. For instance, the proposed scheme can

reduce the recovery time by more than 70.5% in the case

of 16,000 uncommitted requests, compared with the Disk

log-based scheme. This is because the timestamp-based

scheme requires less time for the loading of the uncommitted

requests, although both schemes consume the same time for

the replaying of them in the restoration of the lost changes.

As has been discussed, the maintenance of the write

requests on the client side definitely results in client time and

memory overheads. Thus, measurements of the time and

space overheads of this set of experiments were performed,

the results of which are specifically presented in Table 1.

By referring to the data in the table, it is argued here that

the proposed mechanism does not cause excessive time

and space overheads for backing up the update logs.

Especially, the overhead did not increase dramatically

when the number of recorded logs was increased. For

instance, it consumed a memory of only 20.2 MB for the

buffering of 16,000 update requests on the client side, as

well as 502 ms for the generation of these in-memory

records. This shows the sound scalability of the approach

of the buffering of the write requests on the client side.

C. Summary

With respect to the comparison of the existing schemes

for the achievement of the target of data consistency and the

proposed mechanism, the following two key observations

are emphasized in this paper. First, the buffering of the

write requests on the client side can definitely reduce the

time overhead during the processing of the write workloads,

in contrast to the scheme where the logs are flushed to the

disk. Second, the proposed approach of the timestamp-

based recovery is able to restore the lost-data updates

with an acceptable overhead.

In brief, it is concluded that the proposed mechanism

can significantly reduce the requisite time by guaranteeing

data consistency in the distributed-cache mechanism of

Memcached. Besides, it is believed that this idea can be

naturally merged into other distributed-cache systems

such as Redis [21].

V. CONCLUDING REMARKS

This paper contains the proposal of a novel mechanism

that contains the scheme of a write-request buffering on

the client side and the approach of a timestamp-based

recovery for the purpose of maintaining data consistency

in the Memcached system. That is, the component of the

Memcached client is supposed to back up its write requests,

including the set and add operations, which will be
replayed for a possible data recovery. In the case where

the Memcached server crashes, the rebooted server collects

the buffer logs that have been saved on the client side, and

it replays them according to the timestamp order to

recover the uncommitted lost-data updates. Note that this

newly proposed Memcached-applied mechanism is also

limited by a data-loss risk in the case where the relevant

Memcached client and server crash at the same time.

Compared with the existing approaches for ensuring

data consistency, such as server replication and the

conventional disk-log-based scheme, the newly proposed

mechanism can significantly reduce the time latency during

runtime by up to more than 50% when processing the

update workloads. In conclusion, the proposed approach

of this paper is an attractive option for the application

contexts in which Memcached is leveraged to speed up

the data access where data consistency is the issue.

ACKNOWLEDGMENTS

This work was partially supported by the National

Natural Science Foundation of China (No. 61303038),

Fundamental Research Funds for the Central Universities

(No. XDJK2017B044), and Opening Project of State

Key Laboratory for Novel Software Technology (No.

KFKT2016B05).

Fig. 7. Time overheads for the restoration of the lost updates.

Table 1. Time and space overheads of the logging in the clients

of logs Logging time (ms) Memory (MB)

1,000 82 1.8

2,000 102 3.1

4,000 166 5.8

8,000 287 10.4

16,000 502 20.2

A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System

Jianwei Liao and Xiaoning Peng 99 http://jcse.kiise.org

REFERENCES

1. Memcached, http://memcached.org/.

2. B. Fitzpatrick, “Distributed caching with memcached,” Linux

Journal, vol. 2004, no. 124, pp. 72-76, 2004.

3. R. Nishtala, H. Fugal, and S. Grimm, M. Kwiatkowski, H.

Lee, H. C. Li, et al., “Scaling memcache at Facebook,” in

Proceedings of 10th USENIX Conference on Networked

Systems Design and Implementation, Lombard, IL, 2013, pp.

385-398.

4. P. Talaga and S. Chapin, “Reducing latency and network

load using location-aware memcache architectures,” in Web

Information Systems and Technology. Cham: Springer

International Publishing, 2012, pp. 53-69.

5. Twitter Engineering, “Memcached SPOF Mystery,” 2010,

https://blog.twitter.com/engineering/en_us/a/2010/memcached-

spof-mystery.html.

6. Seattle Conference on Scalability: YouTube Scalability,

https://www.youtube.com/watch?v=ZW5_eEKEC28.

7. A. Wiggins and J. Langston, “Enhancing the scalability of

memcached,” Intel Corporation, Technique Report, 2012.

8. H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data

consistency properties and the trade-offs in commercial

cloud storage: the consumers’ perspective,” in Proceedings

of 5th Biennial Conference on Innovative Data Systems

Research (CIDR), Asilomar, CA, 2011, pp. 134-143.

9. Couchbase: NoSQL database, https://www.couchbase.com/.

10. Y. Lu, H. Sun, X. Wang, and X. Liu, “R-memcached: a

consistent cache replication scheme with memcached,” in

Proceedings of the Middleware '14 Posters & Demos Session,

Bordeaux, France, 2014, pp. 29-30.

11. repcached, http://repcached.lab.klab.org.

12. S. Ristov, Y. Weinsberg, D. Dolev, and T. Anker, “LogMem-

cached: an RDMA based continuous cache replication,” in

Proceedings of ACM Workshop on Kernel-Bypass Networks

(KBNets'17), Los Angeles, CA, 2017, pp. 1-6.

13. P. Stuedi, A. Trivedi, and B. Metzler, “Wimpy nodes with

10GbE: leveraging one-sided operations in soft-RDMA to

boost memcached,” in Proceedings of the 2012 USENIX

Annual Technical Conference (USENIX ATC'12), Boston,

MA, 2012, pp. 347-353.

14. H. Zhang, M. Dong, and H. Chen, “Efficient and available

in-memory KV-store with hybrid erasure coding and

replication,” in Proceedings of the 14th USENIX Conference

on File and Storage Technologies (FAST'16), Santa Clara,

CA, 2016, pp. 167-180.

15. S. Chu, “Memcachedb: the complete guide,” 2008, http://

memcachedb.org/memcachedb-guide-1.0.pdf.

16. S. Yao, D. Agrawal, and G. Chen, B. C. Ooi, and S. Wu,

“Adaptive logging: optimizing logging and recovery costs in

distributed in-memory databases,” in Proceedings of the

2016 International Conference on Management of Data

(SIGMOD), San Francisco, CA, 2016, pp. 1119-1134.

17. C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and

P. M. Schwarz. “ARIES: a transaction recovery method

supporting fine-granularity locking and partial rollbacks

using write-ahead logging,” ACM Transactions on Database

Systems (TODS), vol. 17, no. 1, pp. 94-162, 1992.

18. W. Zheng, S. Tu, E. Kohler, and B. Liskov, “Fast databases

with fast durability and recovery through multicore parallelism,”

in Proceedings of the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI'14), Broomfield,

CO, 2014, pp. 465-477.

19. Gfarm File System, https://sourceforge.net/projects/gfarm/.

20. S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google

file system,” in Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP), Bolton Landing, NY,

2003, pp. 29-43.

21. Redis: in-memory data structure store, https://redis.io/.

Jianwei Liao

Jianwei Liao received Ph.D. degree in computer science from the University of Tokyo, Japan in 2012. He
joined the college of computer and information science, Southwest University of China in March 2012. Dr.
Liao also works for Huaihua University, Huaihua, Hunan, China. His research interests are in system software,
and high performance storage systems for distributed computing environments.

Xiaoning Peng

Xiaoning Peng researched as a visiting scholar in school of computer science of Birmingham University,
Birmingham 2010-2011. Now Peng is a full professor at the school of computer science and engineering
Huaihua University. His research interests include database systems and system software.

