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I. INTRODUCTION 
 

It has been shown that the desired signal is successfully 

preserved if the desired signal is uncorrelated with the 

interference signals [1]. 

If the desired signal is correlated partially or totally (i.e., 

coherent) with the interferences, then the desired signal is 

partially or totally cancelled in the array. 

A variety of methods have been proposed to prevent the 

signal cancellation phenomena in a coherent signal 

environment [1-6]. 

In this paper, a general linearly constrained narrowband 

adaptive array is examined in the eigenvector space. To 

improve the nulling performance, the gain factor is varied to 

find the optimum gain factor. It is observed that variation in 

the gain factor affects the distance between the constraint 

plane and the origin geometrically in the weight vector 

space, such that the larger the gain, the smaller the distance. 

It is shown that the general linearly constrained narrow-

band adaptive array with the optimum gain factor yields a 

better nulling performance than the conventional linearly 

constrained adaptive arrays. 

Adaptive array processing techniques have been applied 

in many areas, including radar [7], sonar [8], and 

seismology [9]. 

 

 

II. OPTIMUM WEIGHT VECTOR 
 

The general linearly constrained narrowband adaptive 

array with 𝑁  sensor elements is shown in Fig. 1. The 

weights  𝒘𝒏, 1 ≤ 𝑛 ≤ 𝑁,  are adjusted to find the optimum 
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Fig. 1. Narrowband general linearly constrained adaptive array. 

 

weight vector to estimate the desired signal with unit gain 

constraint in the look direction (i.e., direction of the desired 

signal). Fig. 1 shows that the desired response 𝑑𝑘  is 

generated by the output of the linear array with uniform 

weights (
1

𝑁
) scaled by the gain factor 𝑔. The optimum 

weight vector, which yields the minimum mean squared 

error with a unit gain constraint in the look direction, can be 

found by solving the following constrained optimization 

problem:  

 

       𝑚 𝑖𝑛   𝐸[|𝑒𝑘|2]  

       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝒘𝐻𝐬 = 1,              (1) 

 

where the error signal is given by 

 

 𝑒𝑘 = 𝑦𝑘 − 𝑑𝑘,                   (2) 

 

the desired signal is expressed as 

 

𝑑𝑘 = 𝑔
𝒔𝐻𝔁𝑘

𝑁
,                    (3) 

 

and the array output is given by 

 

𝑦𝑘 =  𝒘𝐻𝒙𝑘.                   (4) 

 

The input signal vector 𝒙𝑘 =   [𝓍1,𝑘    𝔁2,𝑘   ⋯   𝔁𝑁,𝑘]
𝑇
, the 

weight vector 𝒘 = [𝑤1  𝑤2    ⋯    𝑤𝑁  ]𝑇 , and the steering 

vector 𝒔  for the desired signal 

 𝒔 =  [1  𝑒−𝑗𝛽𝜏0   𝑒−𝑗2𝛽𝜏0  ⋯  𝑒−𝑗(𝑁−1)𝛽𝜏0]
𝑇

where .𝛽  is the 

radian frequency of the desired signal, 𝜏0 = 𝑑 𝑠𝑖𝑛 𝜃0 /𝑣, 𝜃0 

is the incident angle of the desired signal from the array 

normal, 𝑑  is interelement spacing, 𝑣  is the signal 

propagation velocity, 𝑘  is an iteration index, and 𝐸, 𝑇, 

and H denote the expectation, transpose, and complex 

conjugate transpose, respectively. It is assumed that the 

desired signal is incident at the array normal (i.e., 𝜃0 = 0𝑜). 

Since the error signal can be expressed as 

 𝑒𝑘 = (𝒘 – 𝑔
𝒔

𝑁
)

𝐻

𝒙𝑘, 

the optimization problem in (1) may be formulated as 

𝑚 𝑖𝑛   (𝒘 − 𝑔
𝐬

𝑁
)

H

𝑹 (𝒘 − 𝑔
𝐬

𝑁
),         (5) 

       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝒘𝐻𝐬 = 1  

where the input signal correlation matrix 𝑹 = 𝐸[𝒙𝑘𝒙𝑘   
𝐻 ].                                   

The method of Lagrange multipliers [1] is used to find the 

optimal solution by solving the unconstrained minimization 

problem with the following objective function: 

𝑂(𝒘) = (𝒘 − 𝑔
𝐬

𝑁
)

H

𝑹 (𝒘 − 𝑔
𝐬

𝑁
) + λ(𝒘H𝐬 − 1),   (6) 

where λ is a Lagrange multiplier. 

Then the optimum weight vector is given by 

𝒘𝑜𝑝𝑡 = 𝑔
𝐬

𝑁
+ (1 − 𝑔)

𝑹−1𝒔

𝑠𝐻  𝑹−1 𝒔
.                       (7) 

It is observed in (7) that the optimum weight vector lies 

between the uniform weight of the linear array and the 

optimum weight vector for the unit gain constraint 

depending on the value of the gain factor. 

 

 

III. OPTIMUM WEIGHT VECTOR IN THE 
EIGENVECTOR SPACE 

  

To find the optimum weight vector in the eigenvector 

space, we transform the weight vector to that in the 

eigenvector space through the eigenvector matrix 𝑸 of 𝑹, 
such that 

 

  𝑹 =  𝑸𝜦𝑸−𝟏,                 (8) 

 

where 𝜦 is the eigenvalue matrix, which is a diagonal 

matrix whose diagonal elements are eigenvalues, and the 

columns of the eigenvector matrix 𝑸  consist of the 

normalized eigenvectors of 𝑹. The eigenvector matrix is 

unitary, i.e., 𝑸𝑯𝑸 = 𝑰. If the weight vector and the steering 

vector in the eigenvector space are denoted as 𝒛 and 𝒕, 

respectively, we have 

𝒘 = 𝑸𝒛 and 𝒔 = 𝑸𝒕.               (9) 

If (9) is substituted into (7) with (8), we get 

𝑸𝒛𝑜𝑝𝑡 = 𝑔
𝑸𝒕

𝑁
+ (1 − 𝑔)

( 𝑸𝜦𝑸−𝟏)−1𝑸𝒕

(𝑸𝒕)𝐻 ( 𝑸𝜦𝑸−𝟏)−1𝑸𝒕
.      (10) 

If we rearrange (10), the optimum weight vector in the 

eigenvector space is given by  

   𝒛𝑜𝑝𝑡 = 𝑔
𝒕

𝑁
+ (1 − 𝑔)

𝜦−1𝒕

𝑡𝐻  𝜦−1𝒕
.           (11) 
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It is shown that the optimum weight vector in the 

eigenvector space has the same form as that in the standard 

coordinate system, except that the input correlation matrix 

𝑹 and steering vector  𝒔 are replaced with the eigenvalue 

matrix 𝜦 and  tranformed steering vector 𝒕,respectively. 

In the translated weight vector space 𝒗, i.e., 𝒗 = 𝒘 −

𝑔
𝒔

𝑁
, it was shown in [6] that the optimum weight vector is 

given by 

 

    𝒗𝑜𝑝𝑡 = (1 − 𝑔)
𝑹−1𝒔

𝑠𝐻  𝑹−1 𝒔
.            (12) 

 

The optimum weight vector in (12) is the optimum weight 

vector in the original vector space scaled by (1− 𝑔). 

If we denote the optimum weight vector in the 

eigenvector space as 𝒖𝑜𝑝𝑡 , i.e, 𝒗𝑜𝑝𝑡 = 𝑸𝒖𝑜𝑝𝑡 , then the 

optimum weight vector in the eigenvector space can be 

obtained by substituting (8) with 𝒔 = 𝑸𝒕 into (12). Then, 

we can express the optimum weight vector as 

 

  𝒖𝑜𝑝𝑡 = (1 − 𝑔)
𝜦−1𝒕

𝑡𝐻 𝜦−1 𝒕
.            (13) 

 

In (13), it is shown that the translated optimum weight 

vector in the eigenvector space has also the same form as 

that in the standard coordinate system, except that the input 

correlation matrix 𝑹 and steering vector 𝒔 are replaced 

with the eigenvalue matrix 𝜦  and transformed steering 

vector 𝒕, respectively. 

  

 

IV. GENERAL ADAPTIVE ALGORITHM IN THE 
EIGENVECTOR SPACE 

 

The general adaptive algorithm is derived in the 

translated weight vector space using the steepest descent 

method [10] for the constrained optimization problem 

 

    𝑚 𝑖𝑛  𝒗H𝑹𝒗    

      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝒘𝐻𝐬 = 1 − 𝑔.            (14) 

 

The objective function using the Lagrange multiplier 

method [1] is given by 

 

 O(𝒗) = 𝒗H 𝑹𝒗 + λ(𝒗H𝒔 − (1 − 𝑔)).       (15) 

 

The iterative equation to find the optimum weight vector 

is given by 

 

𝒗𝑘+1 = 𝒗𝑘 +  μ(−∇𝒗O(𝒗)),           (16) 

 

where −∇𝒗O(𝒗) is the negative gradient with respect to 𝒗 

and 𝜇 is a convergence parameter. 

Solving the unconstrained minimization problem in (15) 

using the gradient of the objective function with respect to 

𝒗, we get a general adaptive algorithm expressed as 

 

 𝒗𝑘+1 = [𝑰 −
𝒔𝒔𝐻

𝑁
] [𝒗𝑘 − 𝜇𝑅𝒗𝑘] + (1 − 𝑔)

𝒔

𝑁
     (17) 

 

where  𝒗𝑘 = [𝑣1,𝑘   𝑣2,𝑘   ⋯     𝑣𝑁,𝑘  ]
𝑇

,and 𝜤  is the 𝛮 × 𝛮 

identity matrix. 

The general adaptive algorithm in the eigenvector space 

may be derived by transforming (17) using (8) with 

𝒗𝑘 = 𝑸 𝒖𝑘 and 𝒔 = 𝑸𝒕 as 

 

𝑸𝒖𝑘+1 = [𝑰 −
𝑸𝒕𝒕𝐻𝑸𝑯

𝑁
] [𝑸𝒖𝑘 − 𝜇 𝑸𝜦𝒖𝑘] + (1 − 𝑔)

𝑸𝒕

𝑁
. (18) 

 

Rearranging (17), we have the general adaptive algorithm 

in the eigenvector space, which is given by 

 

𝒖𝑘+1 = [𝑰 −
𝒕𝒕𝐻

𝑁
] [𝒖𝑘 − 𝜇𝜦𝒖𝑘] + (1 − 𝑔)

𝒕

𝑁
.    (19) 

     

If 𝑹 in (16) is estimated using an instantaneous 

approximation, i.e., 𝑅 = 𝑥𝑥𝐻, a stochastic general adaptive 

algorithm is found and represented as 

 

𝒗𝑘+1 = [𝑰 −
𝒔𝒔𝐻

𝑁
] [𝒗𝑘 − 𝜇𝑒𝑘

∗𝔁𝑘] + (1 − 𝑔)
𝒔

𝑁
 ,   (20) 

 

where ∗ denotes the complex conjugate. 

The stochastic general adaptive algorithm in the 

eigenvector space can be obtained by following the same 

process with the transformation of 𝒙𝑘 = 𝑸 𝒃𝑘 . Then, we 

have 

 

𝒖𝒌+𝟏 = [𝑰 −
𝒕𝒕𝑯

𝑁
] [𝒖𝑘 − 𝜇𝑒𝑘

∗𝒃𝑘] + (1 − 𝑔)
𝒕

𝑁
.    (21) 

 

It is observed in (21) that the updated unconstrained 

weight vector 𝒖𝑘 is projected onto the constraint subspace, 

which is an orthogonal complement of the subspace spanned 

by the steering vector of the desired signal. Then, the 

projected weight vector is added by the look direction 

steering vector t scaled by (1 − 𝑔)/𝑁 . Notice that the 

steering vector is orthogonal to the constraint subspace. The 

operation to find the next weight vector in the eigenvector 

space is the same as that in the standard coordinate system. 

Therefore, the variation in gain factor results in the 

variation in the distance between the constraint plane and 

the origin in the translated weight vector space. In other 

words, the increase in gain factor decreases the distance 

from the constraint plane to the origin. Thus, the gain factor 

affects the orthogonality between the weight vector and the 

steering vector of the incoming interferences, which affects 

the nulling performance. 
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V. SIMULATION RESULTS 
 

To illustrate the nulling performance of the general 

linearly constrained adaptive array in terms of the gain 

factor, some of the simulation results in [5] are redisplayed 

for the cases of one and two coherent interference and one 

noncoherent interference. 

A narrowband linear array with seven equispaced sensor 

elements was employed to examine the performance of the 

general linearly constrained adaptive array. The incoming 

signals were assumed to be plane waves. The desired signal 

was assumed to be a sinusoid incident at the array normal. 

The cases for two coherent interference and one 

noncoherent interference were simulated. The nulling 

performances were compared with respect to the gain factor 

𝑔 and the linearly conventional constrained adaptive array 

proposed by Frost [1]. The convergence parameter 𝜇 is 

assumed to be 0.001. 

 

A. Case for Two Coherent Interference 
 

The two coherent interferences were assumed to be 

incident at -54.3° and 57.5° from the array normal. The 

variation in error power between the array output and 

desired signal is displayed in Fig. 2. The optimum value of 

𝑔 is shown to be 0.632. The comparison of the array 

performances for 𝑔 = 0.632, 0.01, and the conventional 

(i.e., Frost) linearly constrained adaptive array are shown in 

Figs. 3 and 4 with respect to the array output and desired 

signal for 𝑘 = 1– 1000  and 𝑘 = 29001– 30000samples, 

respectively. It is shown that the case of 𝑔 = 0.632 

performed best, while the performance of 𝑔 = 0.01 was 

similar to the Frost’s adaptive array. The beam patterns are 

shown in Fig. 5, in which the case of 𝑔 = 0.632 makes 

 

 

 

Fig. 2. Variation of the error power in terms of gain factor for two 

coherent interference case. 

the two deepest nulls (-36.6 dB and -30.4 dB) at incident 

angles (-54.3° and 57.5°) of the two coherent interferences, 

while the gains for the Frost adaptive array are -21.0 dB and 

-21.8 dB and the gains for 𝑔 = 0.01 are -22.7 dB and -25.1 

dB, respectively. 

 

 

 

 
 

Fig. 3. Comparison of array output and desired signal for two coherent 

interference case for 1 ≤ k ≤ 1000. 

 

 

 

Fig. 4. Comparison of array output and desired signal for two coherent 

interference case for 29001 ≤ k ≤ 30000. 
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Fig. 5. Comparison of beam patterns for two coherent interference case. 

 

 

B. Case for One Noncoherent Interference 
 

The noncoherent interference was assumed to be 

incident at -64.9°. The variation in the error power 

between the array output and desired signal is displayed in 

Fig. 6. The optimum value of 𝑔 is shown to be 0.0. The 

comparison of the array performance for 𝑔 = 0.01, 1.0, 

and the Frost adaptive array are shown in Figs. 7 and 8, 

respectively, with respect to the array output and 

desired signal for 𝑘 = 1– 1000 and 29001– 30000. It is 

shown that the case of 𝑔 = 0.01, the Frost adaptive array 

yields a similar performance, while both of them perform 

better than the case of 𝑔 = 1.0. The beam patterns are 

shown in Fig. 9, in which the case of 𝑔 = 0.01 and the 

Frost adaptive array show similar gain (-18.6 dB) at the 

incident angle of the interference. 

 

 

 

Fig. 6. Variation in the power of the error signal in terms of gain for one 

noncoherent interference case. 

 

Fig. 7. Comparison of array output and desired signal for one 

noncoherent interference case for 1 ≤ k ≤ 1000. 

 

 

Fig. 8. Comparison of output and desired signal for one noncoherent 

interference case for 29001 ≤ k ≤ 30000. 

 

 

Fig. 9. Comparison of beam patterns for one noncoherent interference 

case. 



J. lnf. Commun. Converg. Eng. 15(3): 137-142, Sep. 2017 

https://doi.org/10.6109/jicce.2017.15.3.137 142 

VI. CONCLUSIONS 
 

A narrowband general linearly constrained adaptive array 

was examined in the eigenvector space to find the array 

operation with respect to the eigenvector space. In the 

eigenvector space the optimum weight vector and general 

adaptive algorithm performed in the same way as in the 

standard coordinate system, except that the input signal 

correlation matrix and look direction steering vector were 

replaced with the eigenvalue matrix and transformed 

steering vector.  

For the stochastic general adaptive algorithm in the 

eigenvector space, the updated unconstrained weight vector 

was projected onto the constraint subspace, and then the 

projected weight vector was added by a scaled look 

direction steering vector. The operation to find the next 

weight vector in the eigenvector space was the same as that 

in the standard coordinate system, except for the relevant 

transformed vectors and matrix. 

Since the variation in gain factor resulted in the variation 

in the distance between the constraint plane and origin in the 

weight vector space such that the increase in gain factor 

decreased the distance from the constraint plane to the 

origin, the nulling performance of the general linearly 

constrained adaptive array was affected. The general 

linearly constrained adaptive array performed better at an 

optimal gain factor compared with the conventional linearly 

constrained adaptive array in a coherent signal environment. 

The former also showed similar performance as the latter in 

the noncoherent signal environment. 
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