
 151

I. INTRODUCTION

Steganography is a useful technique for concealing a

crucial message inside a cover image, especially a bitmap

image. It is famous for the ability to hide data without

creating suspicion. Thus, developing an algorithm for hiding

data plays an important role in creating a steganography

system.

Steganography is usually applied in communication

systems in which the required security level is high in order

to protect not only the information but also the senders and

receivers. The secret message is often embedded into a

cover medium, such as a 24-bit digital image (which is

thought to be the most popular cover message). Its high-

redundancy characteristic ensures there will be enough

space to insert data into the image without causing

remarkable changes. Meanwhile, color images have now

become a universal means of communication and can be

found anywhere in the world at any time. Thus, data is

protected.
Fig. 1 shows a typical example of a steganography system

[1]. In such a system, there are always two main parts. The

encoder hides a secret message in a cover image. The output

of this process is a stego-image. The decoder retrieves the

information from the received stego-image by using

predefined rules based on an implicit agreement between the

sender and the receiver, including the key and the stego

algorithm.

There are several approaches to concealing a message

inside an image so that any changes in the original image

are undetectable and insensible [2], including least

significant bit (LSB) insertion, masking & filtering, and

transformation.

In the LSB insertion method, the LSB planes of the cover

image are altered by the bits of the message, but conform to

particular rules. The quality of the output stego-image is

Received 15 June 2017, Revised 18 June 2017, Accepted 12 July 2017
*Corresponding Author Insoo Koo (E-mail: iskoo@ulsan.ac.kr, Tel: +82-52-259-1249)
School of Electrical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Korea.

 https://doi.org/10.6109/jicce.2017.15.3.151 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 15(3): 151-159, Sep. 2017 Regular paper

FPGA Implementation of LSB-Based Steganography

Quang Do Vinh and Insoo Koo
*
, Member, KIICE

School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea

Abstract

Steganography, which is popular as an image processing technology, is the art of using digital images to hide a secret message

in such a way that its existence can only be discovered by the sender and the intended receiver. This technique has the

advantage of concealing secret information in a cover medium without drawing attention to it, unlike cryptography, which

tries to convert data into something messy or meaningless. In this paper, we propose two efficient least significant bit (LSB)-

based steganography techniques for designing an image-based steganography system on chip using hardware description

language (HDL). The proposed techniques manipulate the LSB plane of the cover image to embed text inside it. The output of

these algorithms is a stego-image which has the same quality as that of the original image. We also implement the proposed

techniques using the Altera field programmable gate array (FPGA) and Quartus II design software.

Index Terms: Field programmable gate array, Hardware design, LSB steganography

Open Access

J. lnf. Commun. Converg. Eng. 15(3): 151-159, Sep. 2017

https://doi.org/10.6109/jicce.2017.15.3.151 152

Fig. 1. Basic steganography system.

Fig. 2. LSB-based image steganography system.

maintained at the same level as the original. Carrying out

this technique requires using an image lossless compression

format so that the hidden data will not get lost, which

usually happens with lossy compression [3]. The most

common image format used in this case is the 24-bit color

image.
The masking & filtering method is usually done on 24-bit

and greyscale images. The message is embedded in the

substantial fields of the image so that they are well mixed.

This method resembles paper watermarks, in which the

information is scattered throughout the cover image [2].

In the transformation method, which is more robust than

LSB insertion, the message is embedded throughout the

entire image by utilizing digital signal processing methods,

such as discrete cosine transform (DCT), discrete Fourier

transform (DFT), and wavelet transform. However, it is hard

to implement due to complex mathematical functions [4].

In this paper, we propose two efficient LSB-based

steganography techniques that can be used for designing an

image-based steganography system using hardware

description language (HDL). The basic idea of the system is

described in Fig. 2. The input of such a system could be a

cover image or a stego-image. If the input file is a cover

image, the secret data are embedded into it with the

protection of a key. If the input file is the stego-image, the

secret information is retrieved by using a reasonable key. In

both cases, the secret message is a text file or text entered

from a keyboard. Meanwhile, the key is usually a short

password that can be memorized easily.

This paper is organized as follows. In Section II, we

illustrate the process of developing LSB steganography

algorithms implemented in Matlab. Also in this section, a

simple LSB insertion technique is simulated with Modelsim

using Verilog HDL to verify its efficiency before being

implemented using a field programmable gate array (FPGA).

The procedure for hardware design is provided in Section III.

Finally, in Sections IV and V, we present the system testing

environment and the conclusion, respectively.

II. LSB STEGANOGRAPHY ALGORITHMS
DEVELOPMENT

MATLAB is an effective mathematical tool in digital

signal processing [5]. Thus, it is used for developing the

algorithms, for testing the outcomes of the hardware

simulation process, and for communicating with the

hardware core processor in designing the steganography

system.

As mentioned earlier, the basic idea of LSB-based

steganography is to embed a message into the least

significant bits of an image. Fundamentally, in a bit map

image, each pixel is composed of three primary red, green

and blue components. And each of them is represented by an

eight-bit number which has a value in the range [0, 255].

Thus, every eight bits of the message can be embedded into

24 bits of a pixel [6]. The essential weakness of this

technique is that the secret data could be extracted by using

statistical analysis. Thus, to prevent the message from being

stolen, algorithms are further developed by adding a

password for level-2 protection.

In this paper, we propose two algorithms: LSB insertion

and watermarking. These two solutions for steganography

were created for the purpose of comparing their strengths

and weaknesses in order to choose the most suitable

algorithm for hardware design. Each of the two algorithms

has pros and cons. For example, watermarking is much

more complex than LSB insertion, but the data are protected

well; LSB insertion is simple but data can be retrieved easily.

We use a bitmap image as the input cover medium to hide

the data, relying on its high-redundancy characteristic and

lossless compression. A bitmap image (which has the

extension .bmp) is one of the most common image formats.

Each bitmap image has a header, which should not be

changed, and primary data. The header contains the file

extension, the resolution, and the offset (representing the

byte distance between the beginning of the bitmap file to the

beginning of the pixel bits) [7]. The secret message can only

be inserted into the primary data of the image.

A. Image Data in MATLAB and ModelSim

ModelSim is a verification and simulation tool for VHDL,

Verilog HDL, System Verilog, and mixed language hardware

FPGA Implementation of LSB-Based Steganography

http://jicce.org 153

Fig. 3. Red, green and blue components in MATLAB.

Fig. 4. The structure of the input image data.

designs. This section explains the way in which data are

loaded into MATLAB, compared to ModelSim. An image

with a resolution of M*N (pixels) is loaded into MATLAB

in the form of an M*N*3 (bytes) matrix in which each

primary color (red, green, and blue) occupies M*N (bytes).

These matrices contain decimal values, as shown in Fig. 3.
Meanwhile, ModelSim reads the input bitmap image in the

form of a binary value array. These numbers are converted to

decimal values to compare with those in MATLAB. And the

following image data are derived from ModelSim. One

important thing to be noticed is the way the numbers are

arranged in the data array, as can be seen in Fig. 4.

From now on, when we discuss embedding a message in

an image, there is an implicit agreement that the message

will be embedded into the pixel bits, not the header.

B. LSB Insertion Algorithm

Message and key are embedded together into the cover

image to provide stronger protection. Thus, the embedded

data are formed as expressed below:

Data = [l-key key Message]

In this formula, l-key is the length of the key that should

be estimated in advance. The LSB-embedding algorithm

substitutes the LSBs of the pixels of the cover image with

the bit stream of the text to be hidden. More specifically,

every eight bits of data will be embedded into every pixel,

or 24 bits, of the image, as illustrated in Fig. 5.

Fig. 5. A simple LSB algorithm inserts eight bits of data into one pixel

(24 bits) of the cover image.

The stego-image is almost the same as the cover image

because the variations in the LSBs of the image pixels do

not result in any remarkable differences in the image. The

detailed LSB-based data hiding algorithms are explained

below.

1) Embedding Process

Step 1: Read the input cover image, then extract the

image header and image data; decompose the image data

into red (R), green (G), and blue (B) channels; meanwhile,

the image header must remain unchanged for further use in

Step 5.

Step 2: Clear the LSB planes of the R, G, and B that will

be used for inserting data.

 LSB_R = bitand(R,248); %use the last three bits

 LSB_G = bitand(G,248); %use the last three bits

 LSB_B = bitand(B,252); %use the last two bits

Step 3: Insert every eight bits of data into every pixel of

the image using the bitor operator.

Step 4: Recompose R, G, and B to create the stego-image.

2) Extraction Process

Step 1: Read the stego-image and extract the primary R,

G, and B colors.

Step 2: Use the key to get the length of the secret text

embedded in the stego-image.

Step 3: Find the secret text (in the form of a binary array)

hidden inside the image.

Step 4: Convert ASCII numbers into strings, and save the

output data into a text file called “message.txt.”

C. Watermarking Algorithm

Watermarking is the process of inserting proprietary

information in a digital image by presenting alterations to its

pixels with minimum perceptual disturbance [8]. In this

paper, the fundamentals of the watermarking algorithm are

almost the same as LSB insertion, meaning that this method

also uses the LSBs of the cover image to hide the data.

J. lnf. Commun. Converg. Eng. 15(3): 151-159, Sep. 2017

https://doi.org/10.6109/jicce.2017.15.3.151 154

RGB YCbCr

Fig. 6. RGB and YCbCr images.

However, the RGB image will be converted into a YCbCr

image for embedding data. In this format, the luminance

(Y) component represents the brightness of the image,

while the chrominance (Cb and Cr) components store the

color difference information. The main reason for the

transformation of RGB to YCbCr is that the human eye has

different sensitivity to color and brightness [9]. The Y

element is more attractive to the human eye than the other

two, whereas any changes taking place in the Cb and Cr

elements will not affect the structure and quality of the

image. Thus, the secret message will be covered in the Cb

and Cr components of the image. Fig. 6 shows an example

of the differences between RGB and YCbCr images.

The watermarking algorithm is illustrated in the following

steps.

1) Encoding Process

Step 1: Read the input cover image; convert it to YCbCr

format by using the following approximation [10]:

0.299 0.587 0.114 0

0.169 0.331 0.499 128

0.499 0.418 0.0813 128

Y R

Cb G

Cr B

    

 

       
       
       
              

 (1)

Step 2: Extract the LSBs of the Cb and Cr components by

using the modulo-2 operation.

Step 3: Select sub-matrices from LSB_Cb and LSB_Cr,

then specify their positions by using (row j, column k).

Step 4: Insert every single bit of data into every LSB_Cb

and LSB_Cr matrix pair using the following rules:

If mod(j+k,2) = 0 then

 If data = 1: LSB_Cb = 0 and LSB_Cr = 1

 If data = 0: LSB_Cb = 1 and LSB_Cr = 0

Else

 If data = 1: LSB_Cb = 1 and LSB_Cr = 0

 If data = 0: LSB_Cb = 0 and LSB_Cr = 1

An example of this algorithm is in Fig. 7.

Step 5: Recompose Y, Cb, and Cr components into the

YCbCr image, then convert the image to bitmap format to

create the stego-image.

Fig. 7. An example of embedding one bit of data into two 3×3 matrices

at position (1,2).

Fig. 8. Steganography (Stego) system model.

2) Decoding Process

The inverse procedure is performed to retrieve the data.

However, due to the process of converting the image from

RGB to YCbCr, and vice versa, the LSB matrices are

changed a little bit, which could lead to changes in the data.

The solution to this problem is to count the number of 0 and

1 bits in those selective sub-matrices to extract the value of

the respective watermark data. For example, if the number

of 0 bits in the LSB_Cb sub-matrix at position (1,2) is

greater than the number of 1 bits, this LSB_Cb sub-matrix is

supposed to be a zeros matrix, and thus, the watermark bit

will be 0.

FPGA Implementation of LSB-Based Steganography

http://jicce.org 155

Fig. 9. The architecture of the NIOS II processor on an FPGA chip.

III. SYSTEM-ON-CHIP DESIGN

The main purpose of this paper is to use Verilog HDL to

design a system-on-chip (SoC) that can execute an LSB-

based image steganography technique. The algorithms for

embedding data into an image have been developed and

verified by using Matlab and Modelsim. In this section,

Quartus II software is used to create the SoC. The Altera

DE2 evaluation kit is used to implement this SoC using an

FPGA chip. The simple model of the proposed steganography

system is presented in Fig. 8.

SoC refers to a single integrated circuit (or chip)

composed of all the components of an electronic system

[11]. In this model, the stego system contains two main parts,

including the Altera NIOS II processor and a stego module.

This system will be able to communicate with a computer

through a USB-to-RS232 cable (for testing purpose) and a

Joint Test Action Group (JTAG) cable (for downloading the

NIOS II software used to control the system).

A. NIOS II Processor

Fig. 9 shows the detailed specifications of the Altera

NIOS II processor consisting of the following components:

 A core processor, system ID, on-chip memory

 Clock controller: Altera phase-locked loop (ALTPLL)

 Synchronous dynamic random-access memory

(SDRAM) controller

 JTAG universal asynchronous receiver-transmitter

(UART) and Serial UART (RS232)

 LCD controller

 Parallel input/output (IO) controller

SOPC Builder was used to create the processor. It is a

powerful system development tool already included as part

of the Quartus II software. We need to specify the system

components, and SOPC Builder generates the interconnect

logic automatically. In this system, there are several ready-

to-use SOPC Builder components provided by Altera and

third-party developers, including the NIOS II core processor

(with system ID and on-chip memory), the Avalon ALTPLL,

JTAG UART, SDRAM controller, and a parallel IO

controller. Meanwhile, the serial UART and liquid crystal

display (LCD) controllers are written using Verilog HDL

and imported into SOPC Builder as custom components.

1) System ID

The system ID helps to specify its existence in the FPGA

chip. This ID must be specified beforehand by the designer

to keep communications between NIOS II software and the

hardware stable.

2) SDRAM Controller

The SDRAM controller helps the system to store data,

such as the message and the image in 8 MB of SDRAM.

3) Altera Phase-Locked Loop

The ALTPLL implements phase-locked loop circuitry,

which operates by producing an oscillator frequency to

match the frequency of the input clock (50 MHz).

4) UART (RS-232 Serial Port)

The system uses this port to communicate with a

computer for transmitting and receiving data (message and

image). The basic settings for this controller are:

- Parity: none

- Data bits: 8

- Stop bit: 1

- Baud rate: 38400 bps

5) Other Controllers

The remaining controllers are used for testing and

demonstration purposes. The parallel IO controller helps to

connect the system with external light emitting diodes

(LEDs), seven-segment displays, and switches. The LCD

controller will control the 16x2 character LCD to display

information like the operation mode of the system (encoder

or decoder).

B. Stego Module

The steganography module has two main parts: encoder

and decoder. The encoder will perform the data embedding

process. Meanwhile, the data retrieval process is carried out

by the decoder. Fig. 10 describes the connection between the

NIOS II processor and the stego module.

As seen in the figure, the processor receives data,

including text and images, from a computer in the form of a

binary array. These data will be stored in SDRAM and are

pre-processed by NIOS II software before being sent to the

J. lnf. Commun. Converg. Eng. 15(3): 151-159, Sep. 2017

https://doi.org/10.6109/jicce.2017.15.3.151 156

Fig. 10. The connection between the NIOS II processor and the stego

module.

Fig. 11. Steganography system’s basic connections at the register-

transfer level.

stego module. There are four streams of eight-bit data,

which will be sent to the stego module every clock cycle.

The chip-select signal is used to choose the operation

mode (encode or decode). With the encoder, the inputs are

Message and Key (Data_in) and the cover image (Red_in,

Green_in, and Blue_in); the outputs are the bit streams of

the stego-image. With the decoder, the inputs are Key and

Stego-image; the outputs are the message bit stream and the

key-check signal. This key-check signal will tell the

processor whether the input key is correct or not. Fig. 11

presents the basic connections between the processor and

the stego module at the register transfer level (RTL).

IV. SYSTEM TESTING

To test the efficiency of the system, data were transmitted

from a PC to the stego system, which was implemented

using an FPGA Cyclone II chip on the DE2 kit. The system

will execute the steganography techniques on the input

binary data, and then send the output data back to the PC.

Communications between the PC and the system (on the

DE2 kit) is carried out through a USB-to-RS232 cable at

38400 bps. A comparative analysis of the proposed

algorithms was also investigated.

Prerequisites:

- Hardware: PC, USB-to-RS232 cable, DE2 kit.

- Software: Matlab, Quartus II, NIOS II.

A. Testing Environment

The testing environment for the encoder and decoder

modules is presented in Figs. 12 and 13, respectively.

Regarding the encoding process, the cover image, the

secret message, and the key are read into Matlab in the form

of a binary array, which is then transmitted to the stego

system through the USB-to-RS232 cable. The system

embeds the message in the image, and then generates the

stego-image. This image is sent back to the PC for further

analysis. The decoding process, on the other hand, uses the

stego-image and a key as its inputs. And the output will be

the secret message if this key matches the key from the

encoding process.

The encoder testing procedure is illustrated in Fig. 14.

Fig. 12. Testing environment for the encoding process.

Fig. 13. Testing environment for the decoding process.

FPGA Implementation of LSB-Based Steganography

http://jicce.org 157

Fig. 14. Encoder testing procedure.

B. Results and Discussion

The length of the message that can be hidden inside an

image should also be considered in evaluating the

algorithm’s efficiency. Regarding the LSB insertion

algorithm, if the resolution of the cover image is M×N, then

it can be used to insert up to M×N×8 bits of the secret

message. For the watermarking technique, the total bits of

the information that can be hidden in the M×N cover image

is (M×N)/(A×B), such that A×B is the size of the

submatrices that are selected for inserting each bit of the

data. In the proposed LSB-based steganography algorithms,

150×200 color images were used as cover images. In theory,

secret text of up to 30,000 characters can be hidden using

the LSB insertion technique. And the maximum characters

of a text message that can be embedded into this image

using the watermarking technique are 150×200/4/8  937

bytes, if the size of the selected sub-matrices is 2×2.

The images can be distorted in the embedding process

due to changing pixel bits. Distortion is measured via two

performance evaluation parameters: mean square error

(MSE) and peak signal-to-noise ratio (PSNR). MSE and

PSNR can be calculated using the following equations [12]:

 
2

1 1

1 M N

ij ij

i j

MSE X Y
M N  

 


 , (2)

2

max
1010log

I
PSNR dB

MSE

 
  

 
, (3)

where M indicates the total number of pixels in the

horizontal dimensions of the image. N shows the total

number of pixels in the vertical dimension. Imax is the

maximum intensity value of each pixel, which could be

equal to 255 for eight-bit grayscale or color images.

A lower MSE value indicates a better image quality. On

the other hand, a higher PSNR means better image quality.

Comparisons between MSE and PSNR of the two proposed

LSB algorithms, based on the effect of changing the length

of the secret text, are shown in Figs. 15 and 16.

As can be seen from the figures, the increment in the

length of the secret message causes the MSE to increase and

PSNR to decrease, which leads to higher statistical

distortion in the stego-image, in comparison to the original.

Furthermore, due to its complexity, the watermarking

technique produces higher MSE and lower PSNR values,

which indicates that the quality of the stego-image is not as

good as that generated by the LSB insertion algorithm.

Another metric that can be used to evaluate the robustness

performance of the two steganography algorithms is RS

steganalysis [13]. The RS steganalytic technique explores

the statistics of the stego-image by dividing the image into

many groups (G) of the same size (M). The variation of each

group can be chosen as the discrimination function f:

1

1 2 1

1

(, ,...,) | |
n

n i i

i

f x x x x x






  . (4)

Fig. 15. The effect on MSE from changing the length of text for the

LSB-based image steganography algorithms.

J. lnf. Commun. Converg. Eng. 15(3): 151-159, Sep. 2017

https://doi.org/10.6109/jicce.2017.15.3.151 158

Fig. 16. The effect on PSNR from changing the length of text for the

LSB image steganography algorithms.

It then defines two flipping operations
1 : 2 2 1F n n  and

1 : 2 1 2F n n   . The number of regular and singular

groups are denoted as RM and SM, as follows.

1| (()) ()
M

G f F G f G
R

G






, (5)

1| (()) ()
M

G f F G f G
S

G






. (6)

R-M and S-M are defined similarly using F-1 function

instead of F1. The statistical hypothesis of RS steganalysis is

that in a typical image with no hidden data, 𝑅𝑀 ≅ 𝑅−𝑀 and

𝑆𝑀 ≅ 𝑆−𝑀. In case of a stego-image, the difference between

R-M and S-M increases faster than the difference between RM

and SM.

Figs. 17 and 18 show RS diagrams for the two proposed

LSB-based image steganography algorithms. As can be seen

from the figures, the LSB insertion algorithm satisfies that

the expected value of RM and SM equal the value of R-M and

S-M, respectively; then it is robust to RS analysis attack. On

the other hand, the watermarking technique seems to be

vulnerable to RS analysis as the difference between R-M and

S-M increases when the length of the input secret message

increases. This is because a 900-byte embedded message is

almost the peak hiding capacity of Watermarking algorithm

when the 150×200 cover image is used. Meanwhile, it

occupies only three percent of the total pixels of the cover

image when it is embedded using the LSB insertion

technique. Therefore, the LSB insertion is more suitable

than the watermarking algorithm for implementing a

steganography system using an FPGA.

Fig. 17. RS-diagram of the stego-image created using LSB insertion

algorithm.

Fig. 18. RS-diagram of the stego-image created using watermarking

algorithm.

V. CONCLUSION

In this paper, we propose two LSB-based image

steganography techniques for embedding data in color

images. The algorithms were first developed using Matlab

software and were then applied to implement a

steganography SoC using an FPGA. While the simple LSB

insertion embeds each byte of the secret message into each

pixel of the cover image, the watermarking hides every

single bit of the data into selective LSB sub-matrices of the

Cb and Cr components extracted from the original image.

The simulation results show that PSNR decreases as the

length of the secret message increases. The results also

FPGA Implementation of LSB-Based Steganography

http://jicce.org 159

indicate that the LSB insertion is more appropriate for

hardware implementation.

ACKNOWLEDGEMENTS

This work was supported by the National Research

Foundation of Korea funded by the MEST (Grant No. NRF-

2015R1A2A11A15053452 and NRF-2015R1D1A1A09057077).

REFERENCES

[1] M. M. Amin, M. Salleh, S. Ibrahim, M. R. Katmin, and M. Z. I.

Shamsuddin, “Information hiding using steganography,” in

Proceedings of 4th National Conference on Telecommunication

Technology (NCTT2003), Shah Alam, Malaysia, pp. 21–25, 2003.

[2] N. F. Johnson and S. Jajodia, “Exploring steganography: seeing

the unseen,” IEEE Computer, vol. 31, no. 2, pp. 26–34, 1998.

[3] L. Wang, J. Wu, L. Jiao, L. Zhang, and G. Shi, “Lossy to lossless

image compression based on reversible integer DCT,” in

Proceedings of 15th IEEE International Conference on Image

Processing (ICIP2008), San Diego, CA, pp. 1037–1040, 2008.

[4] S. Owais, A. Zaidi, T. A. Khan, S. S. Hussain, and M. Hashmani,

“A trend in global steganography and steganalysis approaches,”

Asian Journal of Engineering, Sciences & Technology, vol. 4, no.

1, pp. 30–33, 2014.

[5] G. Blanchet and M. Charbit, Digital Signal and Image Processing

using MATLAB, 1st ed. New York, NY: Wiley, 2006.

[6] R. Chandramouli, M. Kharrazi, and N. Memon, “Image

steganography and steganalysis: concepts and practice,” in Digital

Watermarking. Heidelberg: Springer, pp. 35–49, 2003.

[7] M. S. Al Rababaa, “Colored image-in-image hiding,” in

Proceedings of the 10th International Conference (CADSM2009):

The Experience of Designing and Application of CAD Systems

Microelectronics, Lviv-Polyana, Ukraine, pp. 445–450, 2009.

[8] W. C. Chu, “DCT-based image watermarking using subsampling,”

IEEE Transactions on Multimedia, vol. 5, no. 1, pp. 34–38, 2003.

[9] M. S. Nixon and A. S. Aguado, Feature Extraction & Image

Processing for Computer Vision, 3rd ed. London: Academic Press,

2012.

[10] Y. Yang, P. Yuhua, and L. Zhaoguang, “A fast algorithm for YCbCr

to RGB conversion,” IEEE Transactions on Consumer Electronics,

vol. 53, no. 4, pp. 1490–1493, 2007.

[11] T. Risset, “SoC (System on Chip),” in Encyclopedia of Parallel

Computing. Boston, MA: Springer, pp. 1837–1842, 2011.

[12] S. Mahmoudpour and S. Mirzakuchaki, “Hardware architecture for

a message hiding algorithm with novel randomizers,”

International Journal of Computer Applications, vol. 37, no. 7, pp.

46–53, 2012.

[13] J. Fridrich, M. Goljan, and R. Du, “Detecting LSB steganography

in color and gray-scale images,” IEEE Multimedia, vol. 8, no. 4,

pp. 22–28, 2001.

received his B.E. degree from Ho Chi Minh City University of Technology, Vietnam, in 2009, and his M.Sc. degrees
from RMIT University, Melbourne, Australia, in 2012. He currently enrolls in PhD program at the University of Ulsan,

Korea since March 2017.

received his B.E. degree from Konkuk University, Seoul, Korea, in 1996, and his M.S. and Ph.D. degrees from
Gwangju Institute of Science and Technology (GIST), Gwangju, Korea, in 1998 and 2002, respectively. From 2002 to
2004, he worked with the Ultrafast Fiber-Optic Networks (UFON) Research Center in GIST, as a research professor.
For one year from September 2003, he was a visiting scholar at the Royal Institute of Science and Technology,
Sweden. In 2005, he joined the University of Ulsan, where he is now a full professor. His research interests include
next-generation wireless communication systems and wireless sensor networks.

