DOI QR코드

DOI QR Code

Identification of a Gene Involved in the Negative Regulation of Pyomelanin Production in Ralstonia solanacearum

  • Ahmad, Shabir (Department of Applied Biology, Dong-A University) ;
  • Lee, Seung Yeup (Department of Applied Biology, Dong-A University) ;
  • Khan, Raees (Department of Applied Biology, Dong-A University) ;
  • Kong, Hyun Gi (Department of Applied Biology, Dong-A University) ;
  • Son, Geun Ju (Department of Applied Biology, Dong-A University) ;
  • Roy, Nazish (Department of Applied Biology, Dong-A University) ;
  • Choi, Kihyuck (Department of Applied Biology, Dong-A University) ;
  • Lee, Seon-Woo (Department of Applied Biology, Dong-A University)
  • Received : 2017.05.18
  • Accepted : 2017.07.20
  • Published : 2017.09.28

Abstract

Ralstonia solanacearum causes bacterial wilt in a wide variety of host plant species and produces a melanin-like blackish-brown pigment in stationary phase when grown in minimal medium supplemented with tyrosine. To study melanin production regulation in R. solanacearum, five mutants exhibiting overproduction of melanin-like pigments were selected from a transposon (Tn) insertion mutant library of R. solanacearum SL341. Most of the mutants, except one (SL341T), were not complemented by the original gene or overproduced melanins. SL341T showed Tn insertion in a gene containing a conserved domain of eukaryotic transcription factor. The gene was annotated as a hypothetical protein, given its weak similarity to any known proteins. Upon complementation with its original gene, the mutant strains reverted to their wild-type phenotype. SL341T produced 3-folds more melanin at 72 h post-incubation compared with wild-type SL341 when grown in minimal medium supplemented with tyrosine. The chemical analysis of SL341T cultural filtrate revealed the accumulation of a higher amount of homogentisate, a major precursor of pyomelanin, and a lower amount of dihydroxyphenylalanine, an intermediate of eumelanin, compared with SL341. The expression study showed a relatively higher expression of hppD (encoding hydroxyphenylpyruvate dioxygenase) and lower expression of hmgA (encoding homogentisate dioxygenase) and nagL (encoding maleylacetoacetate isomerase) in SL341T than in SL341. SL341 showed a significantly higher expression of tyrosinase gene compared with SL341T at 48 h post-incubation. These results indicated that R. solanacearum produced both pyomelanin and eumelanin, and the novel hypothetical protein is involved in the negative regulation of melanin production.

Keywords

References

  1. Riley PA. 1997. Melanin. Int. J. Biochem. Cell Biol. 29: 1235-1239. https://doi.org/10.1016/S1357-2725(97)00013-7
  2. Nosanchuk JD, Casadevall A. 1997. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect. Immun. 65: 1836-1841.
  3. White LP. 1958. Melanin: a naturally occurring cation exchange material. Nature 182: 1427-1428. https://doi.org/10.1038/1821427a0
  4. Nosanchuk JD, C asadevall A. 2003. The contribution o f melanin to microbial pathogenesis. Cell. Microbiol. 5: 203-223. https://doi.org/10.1046/j.1462-5814.2003.00268.x
  5. Hill HZ. 1992. The function of melanin or six blind people examine an elephant. BioEssays 14: 49-56. https://doi.org/10.1002/bies.950140111
  6. Fogarty RV, Tobin JM. 1996. Fungal melanins and their interactions with metals. Enzyme Microb. Technol. 19: 311-317. https://doi.org/10.1016/0141-0229(96)00002-6
  7. Han H, Iakovenko L, Wilson AC. 2015. Loss of homogentisate 1,2-dioxygenase activity in Bacillus anthracis results in accumulation of protective pigment. PLoS One 10: e0128967. https://doi.org/10.1371/journal.pone.0128967
  8. Rodriguez-Rojas A, Mena A, Martin S, Borrell N, Oliver A, Blazquez J. 2009. Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology 155: 1050-1057. https://doi.org/10.1099/mic.0.024745-0
  9. Rosas AL, Casadevall A. 1997. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol. Lett. 153: 265-272. https://doi.org/10.1016/S0378-1097(97)00239-5
  10. Plonka PM, Grabacka M. 2006. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim. Pol. 53: 429-443.
  11. Turick CE, Knox AS, Becnel JM, Ekechukwu AA, Milliken CE. 2010. Properties and function of pyomelanin, pp. 449-472. In Magdy Elnashar (ed.), Biopolymers. Sciyo, Aiken, USA.
  12. Aronson JN, Wermus GR. 1965. Effects of m-tyrosine on growth and sporulation of Bacillus species. J. Bacteriol. 90: 38-46.
  13. Pinero S, Rivera J, Romero D, Cevallos MA, Martinez A, Bolivar F, et al. 2007. Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J. Mol. Microbiol. Biotechnol. 13: 35-44. https://doi.org/10.1159/000103595
  14. Solano F, Garcia E, Perez DE, Sanchez-Amat A. 1997. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 63: 3499-3506.
  15. Coon SL, Kotob S, Jarvis BB, Wang S, Fuqua WC, Weiner RM. 1994. Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl. Environ. Microbiol. 60: 3006-3010.
  16. Goodwin PH, Sopher CR. 1994. Brown pigmentation of Xanthomonas campestris pv. phaseoli associated with homogentisic acid. Can. J. Microbiol. 40: 28-34. https://doi.org/10.1139/m94-005
  17. Keith KE, Killip L, He P, Moran GR, Valvano MA. 2007. Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J. Bacteriol. 189: 9057-9065. https://doi.org/10.1128/JB.00436-07
  18. Valeru SP, Rompikuntal PK, Ishikawa T, Vaitkevicius K, Sjoling A, Dolganov N, et al. 2009. Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect. Immun. 77: 935-942. https://doi.org/10.1128/IAI.00929-08
  19. Yabuuchi E, Ohyama A. 1972. Characterization of "pyomelanin"- producing strains of Pseudomonas aeruginosa. Int. J. Syst. Evol. Microbiol. 22: 53-64.
  20. Hayward AC. 2000. Ralstonia solanacearum, pp. 32-42. In Lederberg J (ed.), Encyclopedia of Microbiology. Academic Press, San Diego, CA.
  21. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497-502. https://doi.org/10.1038/415497a
  22. Hernández-Romero D, Solano F, Sanchez-Amat A. 2005. Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl. Environ. Microbiol. 71: 6808-6815. https://doi.org/10.1128/AEM.71.11.6808-6815.2005
  23. Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK, Khan R, et al. 2016. Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PLoS One 11: e0160845. https://doi.org/10.1371/journal.pone.0160845
  24. Jeong Y, Kim J, Kang Y, Lee S, Hwang I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91: 1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  25. Hayward AC, Denny TP. 2001. Ralstonia, pp. 151-173. In Schaad NW, Jones JB, Chun W (eds.), Laboratory Guide for Identification of Plant Pathogenic Bacteria, 5th Ed. APS Press, St. Paul, Minnesota, MN.
  26. Kelman A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693-695.
  27. Wu J, Kong HG, Jung EJ, Choi SY, Lee HJ, Tao W, et al. 2015. Loss of glutamate dehydrogenase in Ralstonia solanacearum alters dehydrogenase activity, extracellular polysaccharide production and bacterial virulence. Physiol. Mol. Plant Pathol. 90: 57-64. https://doi.org/10.1016/j.pmpp.2015.03.003
  28. Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103-119. https://doi.org/10.1016/0378-1119(85)90120-9
  29. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  30. Keen NT, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70: 191-197. https://doi.org/10.1016/0378-1119(88)90117-5
  31. Boyer HW, Roulland-Dussoix D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41: 459-472. https://doi.org/10.1016/0022-2836(69)90288-5
  32. Figurski DH, Helinski DR. 1979. Replication of an origincontaining derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652. https://doi.org/10.1073/pnas.76.4.1648
  33. Ngo HB, Kaiser JT, Chan DC. 2011. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18: 1290-1296. https://doi.org/10.1038/nsmb.2159
  34. Denoya CD, Skinner DD, Morgenstern MR. 1994. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J. Bacteriol. 176: 5312-5319. https://doi.org/10.1128/jb.176.17.5312-5319.1994
  35. Hunter RC, Newman DK. 2010. A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J. Bacteriol. 192: 5962-5671. https://doi.org/10.1128/JB.01021-10
  36. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, et al. 2004. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13: 935-944. https://doi.org/10.1093/hmg/ddh109
  37. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, et al. 2009. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl. Environ. Microbiol. 75: 493-503. https://doi.org/10.1128/AEM.02077-08
  38. Wan X, Chai B, Liao Y, Su Y, Ye T, Shen P, et al. 2009. Molecular and biochemical characterization of a distinct tyrosinase involved in melanin production from Aeromonas media. Appl. Microbiol. Biotechnol. 82: 261-269. https://doi.org/10.1007/s00253-008-1742-5
  39. Wang H, Qiao Y, Chai B, Qiu C, Chen X. 2015. Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PLoS One 10: e0120923. https://doi.org/10.1371/journal.pone.0120923

Cited by

  1. Single Amino Acid Substitution in Homogentisate Dioxygenase Affects Melanin Production in Bacillus thuringiensis vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.02242
  2. Melanin biosynthesis in bacteria, regulation and production perspectives vol.104, pp.4, 2017, https://doi.org/10.1007/s00253-019-10245-y
  3. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-87328-2