DOI QR코드

DOI QR Code

Vitamin A Improves Hyperglycemia and Glucose-Intolerance through Regulation of Intracellular Signaling Pathways and Glycogen Synthesis in WNIN/GR-Ob Obese Rat Model.

  • Jeyakumar, Shanmugam M. (Lipid Biochemistry Division, National Institute of Nutrition) ;
  • Sheril, Alex (Lipid Biochemistry Division, National Institute of Nutrition) ;
  • Vajreswari, Ayyalasomayajula (Lipid Biochemistry Division, National Institute of Nutrition)
  • Received : 2017.02.03
  • Accepted : 2017.08.02
  • Published : 2017.09.30

Abstract

Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

Keywords

References

  1. Sampath H, Ntambi JM. 2011. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann NY Acad Sci 1243: 47-53. https://doi.org/10.1111/j.1749-6632.2011.06303.x
  2. Jeffcoat R, Roberts PA, Ormesher J, James AT. 1979. Stearoyl-CoA desaturase: a control enzme in hepatic lipogenesis. Eur J Biochem 101: 439-445. https://doi.org/10.1111/j.1432-1033.1979.tb19737.x
  3. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM. 2002. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43: 1899-1907. https://doi.org/10.1194/jlr.M200189-JLR200
  4. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD. 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 99: 11482-11486. https://doi.org/10.1073/pnas.132384699
  5. Rahman SM, Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Ntambi JM. 2003. Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci USA 100: 11110-11115. https://doi.org/10.1073/pnas.1934571100
  6. Issandou M, Bouillot A, Brusq JM, Forest MC, Grillot D, Guillard R, Martin S, Michiels C, Sulpice T, Daugan A. 2009. Pharmacological inhibition of stearoyl-CoA desaturase 1 improves insulin sensitivity in insulin-resistant rat models. Eur J Pharmacol 618: 28-36. https://doi.org/10.1016/j.ejphar.2009.07.004
  7. Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD. 2007. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 56: 1228-1239. https://doi.org/10.2337/db06-1142
  8. Garcia-Serrano S, Moreno-Santos I, Garrido-Sanchez L, Gutierrez-Repiso C, Garcia-Almeida JM, Garcia-Arnes J, Rivas-Marin J, Gallego-Perales JL, Garcia-Escobar E, Rojo-Martinez G, Tinahones F, Soriguer F, Macias-Gonzalez M, Garcia-Fuentes E. 2011. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med 17: 273-280.
  9. Jeyakumar SM, Vajreswari A. 2015. Vitamin A as a key regulator of obesity & its associated disorders: evidences from an obese rat model. Indian J Med Res 141: 275-284. https://doi.org/10.4103/0971-5916.156554
  10. Miller CW, Waters KM, Ntambi JM. 1997. Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231: 206-210. https://doi.org/10.1006/bbrc.1997.6070
  11. Stone RL, Bernlohr DA. 1990. The molecular basis for inhibition of adipose conversion of murine 3T3-L1 cells by retinoic acid. Differentiation 45: 119-127. https://doi.org/10.1111/j.1432-0436.1990.tb00465.x
  12. Jeyakumar SM, Vajreswari A, Giridharan NV. 2008. Vitamin A regulates obesity in WNIN/Ob obese rat; independent of stearoyl-CoA desaturase-1. Biochem Biophys Res Commun 370: 243-247. https://doi.org/10.1016/j.bbrc.2008.03.073
  13. Jeyakumar SM, Vijaya Kumar P, Giridharan NV, Vajreswari A. 2011. Vitamin A improves insulin sensitivity by increasing insulin receptor phosphorylation through protein tyrosine phosphatase 1B regulation at early age in obese rats of WNIN/ Ob strain. Diabetes Obes Metab 13: 955-958. https://doi.org/10.1111/j.1463-1326.2011.01407.x
  14. Harishankar N, Vajreswari A, Giridharan NV. 2011. WNIN/ GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain. Indian J Med Res 134: 320-329.
  15. Passonneau JV, Lauderdale VR. 1974. A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60: 405-412. https://doi.org/10.1016/0003-2697(74)90248-6
  16. Raja Gopal Reddy M, Pavan Kumar C, Mahesh M, Sravan Kumar M, Mullapudi Venkata S, Putcha UK, Vajreswari A, Jeyakumar SM. 2016. Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1. Biochim Biophys Acta 1861: 156-165. https://doi.org/10.1016/j.bbalip.2015.11.005
  17. Jeyakumar SM, Sheril A, Vajreswari A. 2015. Chronic vitamin A-enriched diet feeding induces body weight gain and adiposity in lean and glucose-intolerant obese rats of WNIN/GROb strain. Exp Physiol 100: 1352-1361. https://doi.org/10.1113/EP085027
  18. Crespillo A, Alonso M, Vida M, Pavon FJ, Serrano A, Rivera P, Romero-Zerbo Y, Fernandez-Llebrez P, Martinez A, Perez-Valero V, Bermudez-Silva FJ, Suarez J, de Fonseca FR. 2011. Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in dietinduced obesity. Br J Pharmacol 164: 1899-1915. https://doi.org/10.1111/j.1476-5381.2011.01477.x
  19. Schenk S, Horowitz JF. 2007. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 117: 1690-1698. https://doi.org/10.1172/JCI30566
  20. Samuel W, Kutty RK, Nagineni S, Gordon JS, Prouty SM, Chandraratna RA, Wiggert B. 2001. Regulation of stearoyl coenzyme A desaturase expression in human retinal pigment epithelial cells by retinoic acid. J Biol Chem 276: 28744-28750. https://doi.org/10.1074/jbc.M103587200
  21. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ. 2000. Regulation of mouse sterol regulatory elementbinding protein-1c gene (SREBP-1c) by oxysterol receptors, $LXR{\alpha}$ and $LXR{\beta}$. Genes Dev 14: 2819-2830. https://doi.org/10.1101/gad.844900
  22. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. 2009. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156: 885-898. https://doi.org/10.1111/j.1476-5381.2008.00085.x
  23. Markova I, Zidek V, Musilova A, Simakova M, Mlejnek P, Kazdova L, Pravenec M. 2010. Long-term pioglitazone treatment augments insulin sensitivity and PKC-$\varepsilon$ and PKC-$\theta$ activation in skeletal muscles in sucrose fed rats. Physiol Res 59: 509-616.
  24. Jung JY, Lim Y, Moon MS, Kim JY, Kwon O. 2011. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr Metab 8: 18. https://doi.org/10.1186/1743-7075-8-18
  25. Sakaida M, Watanabe J, Kanamura S, Tokunaga H, Ogawa R. 1987. Physiological role of skeletal muscle glycogen in starved mice. Anat Rec 218: 267-274. https://doi.org/10.1002/ar.1092180307
  26. Sugden MC, Orfali KA, Holness MJ. 1995. The pyruvate dehydrogenase complex: nutrient control and the pathogenesis of insulin resistance. J Nutr 125: 1746S-1752S.
  27. Acin-Perez R, Hoyos B, Zhao F, Vinogradov V, Fischman DA, Harris RA, Leitges M, Wongsiriroj N, Blaner WS, Manfredi G, Hammerling U. 2010. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J 24: 627-636. https://doi.org/10.1096/fj.09-142281
  28. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100: 3077-3082. https://doi.org/10.1073/pnas.0630588100
  29. Zolfaghari R, Cifelli CJ, Banta MD, Ross AC. 2001. Fatty acid ${\Delta}^5$-desaturase mRNA is regulated by dietary vitamin a and exogenous retinoic acid in liver of adult rats. Arch Biochem Biophys 391: 8-15. https://doi.org/10.1006/abbi.2001.2361
  30. Holman RT, Johnson SB, Gerrard JM, Mauer SM, Kupcho-Sandberg S, Brown DM. 1983. Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc Natl Acad Sci USA 80: 2375-2379. https://doi.org/10.1073/pnas.80.8.2375
  31. Voss MD, Beha A, Tennagels N, Tschank G, Herling AW, Quint M, Gerl M, Metz-Weidmann C, Haun G, Korn M. 2005. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats: implications for a role of stearoyl-CoA desaturase 1 in insulin resistance. Diabetologia 48: 2622-2630. https://doi.org/10.1007/s00125-005-0025-2

Cited by

  1. Chronic retinoic acid treatment induces differentiation and changes in the metabolite levels of brown (pre)adipocytes vol.37, pp.5, 2019, https://doi.org/10.1002/cbf.3416
  2. Mechanistic links between vitamin deficiencies and diabetes mellitus: a review vol.8, pp.1, 2021, https://doi.org/10.1080/2314808x.2021.1945395
  3. Vitamin A and Diabetes vol.24, pp.8, 2017, https://doi.org/10.1089/jmf.2020.0147