DOI QR코드

DOI QR Code

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images

의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발

  • Oh, Wang-Kyun (Department of Radiology, Chungcheongbuk-do Cheongju Medical Center)
  • 오왕균 (충청북도 청주의료원 영상의학과)
  • Received : 2017.06.07
  • Accepted : 2017.09.23
  • Published : 2017.09.30

Abstract

The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

골 모델제작에 사용되는 3차원 프린팅 선택적 레이저 소결(selective laser sintering; SLS) 방식과 광 경화 조형(stereo lithography apparatus; SLA) 방식은 정밀도와 해상도는 좋으나 프린터가 고가이며 운용에 전문지식이 필요하고, 전산화단층 DICOM(digital imaging and communications in medicine)영상을 STL(stereolithography)로 변환하는 프로그램도 고가여서 3차원 프린팅 업체에서 모델을 제작하여 많은 시간과 비용이 소요되므로 일반적으로 골절수술에 사용하지 못하고 있다. 골절환자의 골 모델을 제작하려면 3차원 영상변환프로그램과 3차원 프린팅시스템의 사용이 편리하고 구입 및 운용비용이 저렴해야 하며 큰 골 모델제작이 가능하여야 수술에 사용할 수 있다. 이에 본 연구에서는 DICOM Viewer OsiriX와 와이어형태의 열가소성 재료를 사용하는 용융적층조형(Fused Deposition Modeling; FDM) 방식의 3차원 프린터를 이용하여 출력 크기에 제한이 없고 적은 비용으로 유지와 제작을 할 수 있도록 일반화하여 많은 병원에서 골절수술에 사용할 수 있도록 골절수술환자의 맞춤형 골 모델을 제작할 수 있는 3차원 프린팅 시스템을 개발하였으며 정형외과학의 교육, 연구, 진료의 전 분야에 걸쳐 광범위하게 응용될 것으로 예상되며, 대학병원뿐 아니라 일반병원에서도 편리하게 사용될 것으로 기대된다.

Keywords

References

  1. Kulkarni, P., Marsan, A., & Dutta, D., "A review of process planning techniques in layered manufacturing," Rapid Prototyping Journal, Vol. 6, No. 1, pp. 18-35, 2000. https://doi.org/10.1108/13552540010309859
  2. Brown, G. A., Milner, B, & Firoozbaksh, K., "Application of computer-generated stereolithography and interpositioning template in acetabular fracture a report of eight case," J Orthop Trauma, Vol. 16, No. 5, pp. 347-352, 2002. https://doi.org/10.1097/00005131-200205000-00010
  3. Ahn, D. G., Lee, J. Y., Yang, D. Y., et al., "Investigation into the Development of Technology for Orthopeadic Surgery Utilizing Reverse Engineering and Rapid Prototyping Technology," Journal of the Korean Society for Precision Engineering, Vol. 21, No. 6, pp. 188-196, 2004.
  4. Stocker, N. G., Mankovitch, N. J., & Valention, D., "Stereoligthographic models for surgical planning-preliminary report," Journal of Oral & Maxillofacial Surgery, Vol. 50, No. 5, pp. 446-471, 1992.
  5. Web, P. A., "A review of rapid prototyping (RP) techniques in the medical and biomedical sector," Journal of Medical Engineering & Technology, Vol. 24, No. 4, pp. 149-153, 2009. https://doi.org/10.1080/03091900050163427
  6. Sanghera, B., Naique, S., Papaharilaou Y., et al., "Preliminary study of rapid prototypes medical models," Rapid Prototyping Journal, Vol. 7, No. 5, pp. 275-284, 2001. https://doi.org/10.1108/13552540110410486
  7. Sohn, H. M., Lee, J. Y., Ha, S. H., et al., "Rapid Prototyping Assisted Orthopaedic Fracture Surgery : A Case Report," Journal of the Korean Orthopedic Association, Vol. 39, No. 7, pp. 845-848, 2004. https://doi.org/10.4055/jkoa.2004.39.7.845
  8. Honiball, J. R., "The Application of 3D Printing in reconstructive surgery," Dissertation presented in fulfilment of the requirements for the degree MscIng in Industrial Engineering at the University of Stellenbosch, South Africa, 2010.
  9. Frame, M., & Huntley, J. S., "Rapid Prototyping in Orthopaedic Surgery: A User's Guide," The Scientific World Journal, Vol. 2012, 2012.
  10. Oh, W. K., Lim, K. S., & Lee, T. S., "Additive Manufacturing of Patient specific Femur Via 3D Printer Using Computed Tomography Images," Journal of the Korean Society of Radiology, Vol. 7, No. 5, pp. 359-364, 2013. https://doi.org/10.7742/jksr.2013.7.5.359
  11. Oh, W. K., "Evaluation of Usefulness and Availability for Orthopedic Surgery using Clavicle Fracture Model Manufactured by Desktop 3D Printer," Journal of Radiological Science and Technology, Vol. 37, No. 3, pp. 203-209, 2014.
  12. Oh, W. K., "Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer," The Journal of the Korea Contents Association, Vol. 14, No. 11, pp. 370-377, 2014. https://doi.org/10.5392/JKCA.2014.14.11.370
  13. Kim, H. G., "A Novel Modeling Method for Manufacturing Hearing Aid Using 3D Medical Images," Journal of Radiological Science and Technology, Vol. 39, No. 2, pp. 257-262, 2016. https://doi.org/10.17946/JRST.2016.39.2.15
  14. http://www.osirix-viewer.com/
  15. Seoung, Y. H., "Comparison of Hounsfield Units by Changing in Size of Physical Area and Setting Size of Region of Interest b y Using the CT Phantom Made with a 3D Printer," Journal of Radiological Science and Technology, Vol. 38, No. 4, pp. 421-427, 2015. https://doi.org/10.17946/JRST.2015.38.4.12