DOI QR코드

DOI QR Code

성능 향상을 위한 퍼지 논리 기반 DASH 알고리즘의 수정

A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement

  • 김현준 (건국대학교 전자.정보통신공학과) ;
  • 손예슬 (건국대학교 전자.정보통신공학과) ;
  • 김준태 (건국대학교 전자.정보통신공학과)
  • Kim, Hyun-Jun (Department of Electronic Engineering, Konkuk University) ;
  • Son, Ye-Seul (Department of Electronic Engineering, Konkuk University) ;
  • Kim, Joon-Tae (Department of Electronic Engineering, Konkuk University)
  • 투고 : 2017.06.26
  • 심사 : 2017.08.25
  • 발행 : 2017.09.30

초록

본 논문에서는 시변 네트워크 상황에서 끊김 없는 미디어 서비스를 제공 할 수 있는 퍼지 논리 기반 DASH 적응 알고리즘(FDASH)의 수정을 제안한다. 제안하는 알고리즘은 퍼지 논리 제어부(FLC : Fuzzy Logic Controller)의 수정을 통하여 다음 요청 할 세그먼트의 비트율에 대해 최적의 판단을 하도록 하고, 세그먼트 비트율 필터링 모듈(SBFM : Segment Bit-rate Filtering Module)을 적용하여 비디오 화질의 변화 횟수를 줄인다. 또한, 스트리밍 서비스를 시작 할 때 사용자들이 일정시간 저화질의 비디오를 시청해야 하는 상황을 막는 시작 메커니즘(Start Mechanism)과 버퍼의 오버플로우를 방지하는 대기 메커니즘(Sleeping Mechanism)을 포함한다. 최종적으로 제안된 알고리즘이 FDASH에 비해 좋은 성능을 가짐을 NS-3를 이용한 모의실험을 통해 검증한다. 모의실험 결과, 제안된 방식이 FDASH에 비해 제한된 버퍼크기 상황 하에서도 버퍼 언더플로우/오버플로우가 발생하지 않음을 확인하였다. 또한 점대점(Point-to-Point) 환경과 Wi-Fi환경에서 거의 동일 화질 성능을 보이면서도 비디오 화질 변화 횟수를 50% 이상 줄일 수 있음을 확인하였다.

In this paper, we propose a modification of fuzzy logic based DASH adaptation algorithm(FDASH) for seamless media service in time-varying network conditions. The proposed algorithm selects more appropriate bit-rate for the next segment by the modification of the Fuzzy Logic Controller(FLC) and reduces the number of video bit-rate changes by applying Segment Bit-rate Filtering Module(SBFM). Also, we apply the Start Mechanism for clients not to watch the low quality videos in the very beginning stage of streaming service and add the Sleeping Mechanism to avoid any buffer overflow expected. Ultimately, we verified by using NS-3 Network Simulator that the proposed method shows better performance compared to FDASH. According to the experimental results, there is no buffer underflow/overflow within the limited buffer size, which is not guaranteed in FDASH on the other hand. Also, we confirmed that mFDASH has almost the same level of average video quality against FDASH and reduces about 50% of number of video bit-rate changes compared to FDASH in Point-to-Point network and Wi-Fi network.

키워드

참고문헌

  1. I. Sodagar, "The mpeg-dash standard for multimedia streaming over the internet." IEEE MultiMedia Vol.18, No.4, pp.62-67, April 2011. https://doi.org/10.1109/MMUL.2011.71
  2. T. Stockhammer, "Dynamic adaptive streaming over HTTP--: standards and design principles," Proceedings of the second annual ACM conference on Multimedia systems, San Jose, CA, USA, pp.133-144, 2011.
  3. M. Park, and Y. Kim, "MMT-based Broadcasting Services Combined with MPEG-DASH," Journal of Broadcast Engineering, Vol.20, No.6, pp.283-299, March 2015. https://doi.org/10.5909/JBE.2015.20.2.283
  4. G. Park, G. Lee, J. Lee, and K. Kim, "HTTP Adaptive Streaming Method for Service-compatible 3D Contents Based on MPEG DASH," Journal of Broadcast Engineering, Vol.17, No.2, pp.207-222, March 2012. https://doi.org/10.5909/JEB.2012.17.2.207
  5. Y. Kim, and M. Park, "MPEG-DASH Services for 3D Contents Based on DMB AF," Journal of Broadcast Engineering, Vol.18, No.1, pp.115-121, January 2013. https://doi.org/10.5909/JBE.2013.18.1.115
  6. C. Zhou, Lin, C. W., and Guo, Z., "mDASH: A markov decision-based rate adaptation approach for dynamic HTTP streaming." IEEE Transactions on Multimedia, Vol.18, No.4, pp.738-751, January 2016. https://doi.org/10.1109/TMM.2016.2522650
  7. D. L. Isaacson, and W. M. Richard, Markov chains, theory and applications. Vol. 4. New York: Wiley, 1976.
  8. R. M. Blumenthal, and R. K. Getoor, Markov processes and potential theory. Courier Corporation, 2007.
  9. M. Zhao, X. Gong, J. Liang, W. Wang, X. Que, and S. Cheng, "Scheduling and resource allocation for wireless dynamic adaptive streaming of scalable videos over HTTP." Communications (ICC), Sydney, NSW, Australia, pp. 1681-1686, 2014.
  10. H. Schwarz, D. Marpe, and T. Wiegand. "Overview of the scalable video coding extension of the H. 264/AVC standard." IEEE Transactions on circuits and systems for video technology Vol.17, No.9, pp.1103-1120, September 2007. https://doi.org/10.1109/TCSVT.2007.905532
  11. G. Tian, and Y Liu. "Towards agile and smooth video adaptation in dynamic HTTP streaming." Proceedings of the 8th international conference on Emerging networking experiments and technologies, Nice, France, pp.109-120, 2012.
  12. Q. He, C. Dovrolis, and M. Ammar. "On the predictability of large transfer TCP throughput." ACM SIGCOMM Computer Communication Review, Vol. 35, No. 4, ACM, October 2005.
  13. G. Klir, and B. Yuan. Fuzzy sets and fuzzy logic, New Jersey: Prentice hall, 1995.
  14. L. A. Zadeh, "Fuzzy logic." Computer Vol.21, No.4, pp.83-83, April 1988. https://doi.org/10.1109/2.53
  15. D. J. Vergados, et al, "FDASH: A Fuzzy-Based MPEG/DASH Adaptation Algorithm." IEEE Systems Journal Vol.10, No.2, pp.859-868, December 2015. https://doi.org/10.1109/JSYST.2015.2478879
  16. R. KP. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, "QDASH: a QoE-aware DASH system." Proceedings of the 3rd Multimedia Systems Conference, New York, NY, USA, pp.11-22, 2012.
  17. SG12, I. T. U. T. "Definition of quality of experience." TD 109rev2 (PLEN/12), Geneva, Switzerland, pp.16-26, 2007.
  18. H. R. Berenji, "Fuzzy logic controllers." An Introduction to Fuzzy Logic Applications in Intelligent Systems. Springer US, pp. 69-96, 1992.
  19. C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I." IEEE Transactions on systems, man, and cybernetics, Vol.20, No.2, pp.404-418, March/April, 1990. https://doi.org/10.1109/21.52551
  20. The network simulator - ns-3, http://www.nsnam.org/ (accessed May. 25, 2017).
  21. Z. Bingul, and O. Karahan, "A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control," Expert Systems with Applications, Vol.38, No.1, pp.1017-1031, January 2011. https://doi.org/10.1016/j.eswa.2010.07.131
  22. M. Seufert, S. Egger, M. Slanina, and T. Zinner, "A survey on quality of experience of HTTP adaptive streaming," IEEE Communications Surveys & Tutorials, Vol.17, No.1, pp.469-492, March 2015. https://doi.org/10.1109/COMST.2014.2360940
  23. K. Xiao, S. Mao, and J. K. Tugnait, "QoE-Driven Resource Allocation for DASH over OFDMA Networks," Proceedings of Global Communications Conference (GLOBECOM), Washington, DC, USA, pp.1-6, 2016.
  24. S. Egger, B. Gardlo, M. Seufert, and R. Schatz, "The impact of adaptation strategies on perceived quality of http adaptive streaming," Proceedings of the 2014 Workshop on Design, Quality and Deployment of Adaptive Video Streaming. Sydney, Australia, pp-31-36, 2014.