DOI QR코드

DOI QR Code

Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle

보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석

  • Hyeong, Joonho (Human Convergence Technology Group, Korea Institute of Industrial Technology) ;
  • Roh, Jongryun (Human Convergence Technology Group, Korea Institute of Industrial Technology) ;
  • Kim, Sayup (Human Convergence Technology Group, Korea Institute of Industrial Technology)
  • 형준호 (한국생산기술연구원 휴먼융합기술그룹) ;
  • 노종련 (한국생산기술연구원 휴먼융합기술그룹) ;
  • 김사엽 (한국생산기술연구원 휴먼융합기술그룹)
  • Received : 2017.01.20
  • Accepted : 2017.08.07
  • Published : 2017.10.01

Abstract

Gait stability is partly characterized by an extended stance phase that comprises 60 of the gait % cycle. In this study, a gait pattern was employed for a crank drive system that allows for stable lower limb kinematics during stand-up cycling. A quick return mechanism was applied to the crank system to allow for a slow rotation of the crank during the stance phase and for a quick return during the swing phase. Design parameters for the quick return crank mechanism were defined, and kinematic simulations were performed to understand the behavior of the mechanism. To evaluate the design, an experimental instrument was fabricated, and the cycling motion was analyzed. The results indicated that this new drive system can stabilize the center of mass of the user. This study can contribute to the development of a stand-up bicycle that allows for more comfortable leg kinematics.

인간의 보행에서 안정적인 디딤을 가능하게 하는 동작특성은 보행 일주기의 60%를 차지하는 긴 디딤국면이다. 본 연구에서는 이러한 보행패턴을 자전거의 크랭크 구동장치에 반영하여 직립자세에서 안정적으로 구동할 수 있는 자전거를 설계하고자 한다. 크랭크의 회전속도를 디딤국면에서는 느리게 되돌림국면에서는 빠르게 움직이도록 급속귀환 기구를 크랭크 구동시스템에 적용하였다. 이 급속귀환 크랭크기구의 설계변수를 정의하고 설계변수의 변화가 크랭크의 거동에 미치는 영향을 시뮬레이션 하였다. 또한 실험장치를 제작한 후 탑승자의 구동동작을 분석한 결과 보행패턴을 접목한 크랭크는 사용자 무게중심 안정화에 기여하는 것으로 나타났다. 향후 보행패턴을 접목한 크랭크는 서서 타는 자전거의 구동시스템에 접목 가능할 것으로 보인다.

Keywords

References

  1. Hyeong, J., Roh, J. and Kim, S., 2016, "Optimization of Pivot Obliquity for a Foldable Bicycle," International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 7, pp. 931-936. https://doi.org/10.1007/s12541-016-0113-x
  2. Santalla, A., Manzano, Jose M., Pe Rez, M. and Lucia, A., 2002, "A New Pedaling Design: the Rotor-effects on Cycling Performance," Medicine & Science in Sports & Exercise, Vol. 34, pp. 1387-1398.
  3. Lucia, A., Balmer, J., Davison, RC., Perez, M., Santalla, A. and Smith, PM., 2004, "Effects of the Rotor Pedalling System on the Performance of Trained Cyclists During Incremental and Constant Load Cycle Ergometer Tests," Int J Sports Med., Vol. 25, No. 7, pp. 479-485. https://doi.org/10.1055/s-2004-820941
  4. Belen, L., Habrard, M., Micallef, J. P., Perrey, S. and Le, Gallais, D., 2007, "Cycling Performance and Mechanical Variables Using a New Prototype Chainring," Eur J Appl Physiol, Vol. 101, pp. 721-726. https://doi.org/10.1007/s00421-007-0547-z
  5. Rodriguez-Marroyo, JA., Garcia-Lopez, J., Chamari, K., Cordova, A., Hue, O. and Villa, JG., 2009, "The Rotor Pedaling System Improves Anaerobic But Not Aerobic Cycling Performance in Professional Cyclists," Eur J Appl Physiol, Vol. 106, pp. 87-94. https://doi.org/10.1007/s00421-009-0993-x
  6. Stone, C. and Hull, M. L., 1993, "Rider/Bicycle Interaction Loads During Standing Treadmill Cycling," JOURNAL OF APPLIED BIOMECHANICS, Vol. 9, pp. 202-218. https://doi.org/10.1123/jab.9.3.202
  7. Perry, J., 1987, "Gait Analysis : Normal and Pathological Function," Slack Incorporated, New Jersey, pp. 3-7.
  8. Lee, J., 2008, "Design of Packer Holder Mechanism in an Egg Grading Machine," Journal of the Korean Society for Precision Engineering, Vol. 25, No. 2, pp. 96-104.
  9. Lee, J., 2008, "Cam Design of Packer Holder in Egg Granding Machine," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 10, pp. 897-904. https://doi.org/10.3795/KSME-A.2008.32.10.897