HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITELY TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Abstract. Jin [10] studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study further the geometry of this subject. The object of this paper is to study the geometry of half lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

1. Introduction

A linear connection ∇ on a semi-Riemannian manifold (\tilde{M}, \tilde{g}) is said to be a \textit{quarter-symmetric connection} if its torsion tensor \tilde{T} satisfies

$$\tilde{T}(\tilde{X}, \tilde{Y}) = \theta(\tilde{Y})J\tilde{X} - \theta(\tilde{X})J\tilde{Y},$$

where J is a $(1, 1)$-type tensor field and θ is a 1-form associated with a smooth vector field ζ by $\theta(X) = \tilde{g}(X, \zeta)$. Moreover, if this connection ∇ is metric, \textit{i.e.}, $\tilde{\nabla}\tilde{g} = 0$, then $\tilde{\nabla}$ is called a \textit{quarter-symmetric metric connection}. The notion of quarter-symmetric metric connection was introduced by Yano-Imai [14]. The geometry of lightlike hypersurface of an indefinite trans-Sasakian manifolds with a quarter-symmetric metric connection was studied by Jin [10]. Throughout this paper, denote by \tilde{X}, \tilde{Y} and \tilde{Z} the smooth vector fields on \tilde{M}.

Let M be a submanifold of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) of codimension 2 with the tangent bundle TM and the normal bundle TM^\perp. Denoted by $\text{Rad}(TM) = TM \cap TM^\perp$ the radical distribution. Then M is called

1. \textit{half lightlike submanifold} if $\text{rank}\{\text{Rad}(TM)\} = 1$,
2. \textit{coisotropic submanifold} if $\text{rank}\{\text{Rad}(TM)\} = 2$.

Half lightlike submanifold was introduced by Duggal-Bejancu [4] and later, studied by Duggal-Jin [5]. Its geometry is more general than that of lightlike hypersurface or coisotropic submanifold. Much of its theory will be immediately generalized in a formal way to general lightlike submanifolds.

Received January 20, 2017; Accepted September 19, 2017.

2010 \textit{Mathematics Subject Classification}. Primary 53C25, 53C40, 53C50.

\textit{Key words and phrases}. quarter-symmetric metric connection, half lightlike submanifold, indefinite trans-Sasakian structure.
The notion of trans-Sasakian manifold, of type \((\alpha,\beta)\), was introduced by Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of trans-Sasakian manifold such that

\[
\alpha = 1, \quad \beta = 0; \quad \alpha = 0, \quad \beta = 1; \quad \alpha = \beta = 0,
\]

respectively. We say that a trans-Sasakian manifold \(\tilde{M}\) is an indefinite trans-Sasakian manifold if \(\tilde{M}\) is a semi-Riemannian manifold.

In this paper, we study half lightlike submanifolds of an indefinite trans-Sasakian manifold \(\tilde{M} \equiv (\tilde{M}, J, \zeta, \theta, \tilde{g})\) with a quarter-symmetric metric connection, in which the tensor field \(J\) and the 1-form \(\theta\), defined by (1.1), are identical with the structure tensor field \(J\) and the structure 1-form \(\theta\) of the indefinite trans-Sasakian structure \((J, \theta, \zeta, \tilde{g})\) on \(\tilde{M}\), respectively.

Remark 1. Denote by \(\tilde{\nabla}\) the Levi-Civita connection of \(\tilde{M}\) with respect to the semi-Riemannian metric \(\tilde{g}\). Due to [9], it is known that a linear connection \(\nabla\) on \(\tilde{M}\) is a quarter-symmetric metric connection if and only if \(\nabla\) satisfies

\[
\tilde{\nabla}_X \tilde{Y} = \tilde{\nabla}_X \tilde{Y} - \theta(\tilde{X})J\tilde{Y}. \tag{1.2}
\]

2. Preliminaries

An odd-dimensional semi-Riemannian manifold \((\tilde{M}, \tilde{g})\) is called an indefinite trans-Sasakian manifold if there exist a structure set \(\{J, \zeta, \theta, \tilde{g}\}\), a Levi-Civita connection \(\tilde{\nabla}\) and two smooth functions \(\alpha\) and \(\beta\), where \(J\) is a \((1,1)\)-type tensor field, \(\zeta\) is a vector field, and \(\theta\) is a 1-form such that

\[
\begin{align*}
J^2 \tilde{X} &= -\tilde{X} + \theta(\tilde{X})\zeta, \quad \theta(\zeta) = 1, \quad \theta(\tilde{X}) = \epsilon \tilde{g}(\tilde{X}, \zeta), \\
\theta \circ J &= 0, \quad \tilde{g}(J\tilde{X}, J\tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}) - \epsilon \theta(\tilde{X})\theta(\tilde{Y}), \\
(\tilde{\nabla}_X J)\tilde{Y} &= \alpha\{\tilde{g}(\tilde{X}, \tilde{Y})\zeta - \epsilon \theta(\tilde{Y})\tilde{X}\} \\
&\quad + \beta\{\tilde{g}(J\tilde{X}, \tilde{Y})\zeta - \epsilon \theta(\tilde{Y})J\tilde{X}\},
\end{align*}
\]

where \(\epsilon\) denotes \(\epsilon = 1\) or \(-1\) according as \(\zeta\) is spacelike or timelike, respectively.

\(\{J, \zeta, \theta, \tilde{g}\}\) is called an indefinite trans-Sasakian structure of type \((\alpha, \beta)\).

In the entire discussion of this paper, we shall assume that the structure vector field \(\zeta\) is a spacelike one, i.e., \(\epsilon = 1\), without loss of generality.

Replacing the Levi-Civita connection \(\tilde{\nabla}\) by the quarter-symmetric metric connection \(\nabla\) given by (1.2), the last equation of (2.1) is reduced to

\[
(\nabla_X J)\tilde{Y} = \alpha\{\tilde{g}(\tilde{X}, \tilde{Y})\zeta - \theta(\tilde{Y})\tilde{X}\} + \beta\{\tilde{g}(J\tilde{X}, \tilde{Y})\zeta - \theta(\tilde{Y})J\tilde{X}\}. \tag{2.2}
\]

Replacing \(\tilde{Y}\) by \(\zeta\) to (2.2) and using \(J\zeta = 0\) and \(\theta(\nabla_X \zeta) = 0\), we obtain

\[
\nabla_X \zeta = -\alpha J\tilde{X} + \beta(1 - \theta(X)\zeta). \tag{2.3}
\]

Let \((M, g)\) be a half lightlike submanifold of an indefinite trans-Sasakian manifold \(\tilde{M}\) equipped with the radical distribution \(\text{Rad}(TM)\), a screen distribution \(S(TM)\) and a coscreen distribution \(S(TM^\perp)\) such that

\[
TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp).
\]
Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_i$ the i-th equation of the six equations in (2.1). We use the same notations for any others. Let ξ be a section of $\text{Rad}(TM)$. Assume that L is a unit spacelike basis vector field of $S(TM\perp)$, without loss of generality. Consider the orthogonal complementary distribution $S(TM\perp)$ to $S(TM)$ in TM. Certainly ξ and L belong to $\Gamma(S(TM\perp))$. Thus we have

$$S(TM\perp) = S(TM\perp) \oplus_{\text{orth}} S(TM\perp)\perp,$$

where $S(TM\perp)$ is the orthogonal complementary to $S(TM\perp)$ in $S(TM\perp)$. It is known [5] that, for any null section ξ of $\text{Rad}(TM)$, there exists a uniquely defined null vector field $N \in \Gamma(S(TM\perp))$ satisfying

$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, L) = 0, \quad \forall X \in \Gamma(S(TM)).$$

Denote by $\text{ltr}(TM)$ the vector subbundle of $S(TM\perp)$ locally spanned by N. Then we show that $S(TM\perp) = \text{Rad}(TM) \oplus \text{ltr}(TM)$. We call N, $\text{ltr}(TM)$ and $\text{tr}(TM) = S(TM\perp) \oplus_{\text{orth}} \text{ltr}(TM)$ the null transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution $S(TM)$, respectively.

Denote by X, Y and Z the vector fields on M, unless otherwise specified. As the tangent bundle \bar{TM} of the ambient manifold \bar{M} is satisfied

$$\bar{TM} = TM \oplus \text{tr}(TM) = TM \oplus \text{ltr}(TM) \oplus_{\text{orth}} S(TM\perp),$$

the Gauss and Weingarten formulae of M are given respectively by

\begin{align*}
\bar{\nabla}_XY &= \nabla_XY + B(X,Y)N + D(X,Y)L, \\
\bar{\nabla}_XN &= -A_XX + \tau(X)N + \rho(X)L, \\
\bar{\nabla}_XL &= -A_LX + \lambda(X)N,
\end{align*}

(2.4) \hfill (2.5) \hfill (2.6)

where ∇ is the linear connection on M, B and D are the local second fundamental forms of M, A_X and A_L are the shape operators, and τ, ρ and λ are 1-forms on TM. Let P be the projection morphism of TM on $S(TM)$ and η a 1-form such that $\eta(X) = \bar{g}(X, N)$. As $TM = S(TM) \oplus_{\text{orth}} \text{Rad}(TM)$, the Gauss and Weingarten formulae of $S(TM)$ are given respectively by

\begin{align*}
\nabla_XPY &= \nabla^*_XPY + C(X, PY)\xi, \\
\nabla_X\xi &= -A^*_\xi X - \tau(X)\xi,
\end{align*}

(2.7) \hfill (2.8)

where ∇^* is the linear connection on $S(TM)$, C is the local screen second fundamental form of $S(TM)$, A^*_ξ is the shape operator.

From the facts that $B(X,Y) = \bar{g}(\nabla_XY, \xi)$ and $D(X,Y) = \bar{g}(\nabla_XY, L)$, we show that B and D are independent of the choice of $S(TM)$ and satisfy

$$B(X, \xi) = 0, \quad D(X, \xi) = -\lambda(X). \quad (2.9)$$
The local second fundamental forms are related to their shape operators by
\[B(X,Y) = g(A^*_X X,Y), \quad \bar{g}(A^*_X X,N) = 0, \quad (2.10) \]
\[C(X,PY) = g(A^*_X X,PY), \quad \bar{g}(A^*_X X,N) = 0, \quad (2.11) \]
\[D(X,Y) = g(A^*_X X,Y) - \lambda(X)\eta(Y), \quad \bar{g}(A^*_X X,N) = \rho(X). \quad (2.12) \]

3. Structure equations on \(M \)

Călin [2] proved that if \(\zeta \) is tangent to \(M \), then it belongs to \(S(TM) \) which we assume. It is known [7] that, for any half lightlike submanifold \(M \) of an indefinite trans-Sasakian manifold \(\bar{M} \), \(J(Rad(TM)) \), \(J(ltr(TM)) \) and \(J(S(TM^\perp)) \) are vector subbundles of \(S(TM) \), of rank 1. There exist two non-degenerate almost complex distributions \(H_o \) and \(H \) with respect to \(J \) such that
\[S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{orth} J(S(TM^\perp)) \oplus_{orth} H_o, \]
\[H = Rad(TM) \oplus_{orth} J(Rad(TM)) \oplus_{orth} H_o. \]

In this case, the tangent bundle \(TM \) is decomposed as follow:
\[TM = H \oplus J(ltr(TM)) \oplus_{orth} J(S(TM^\perp)). \quad (3.1) \]

Consider two local null vector fields \(U \) and \(V \), a local unit spacelike vector field \(W \) on \(S(TM) \), and their 1-forms \(u, v \) and \(w \) defined by
\[U = -JN, \quad V = -J\xi, \quad W = -JL, \quad (3.2) \]
\[u(X) = g(X,V), \quad v(X) = g(X,U), \quad w(X) = g(X,W). \quad (3.3) \]

Let \(S \) be the projection morphism of \(TM \) on \(H \) and \(F \) the tensor field of type \((1,1)\) globally defined on \(M \) by \(F = J \circ S \). Then \(JX \) is expressed as
\[JX = FX + u(X)N + w(X)L. \quad (3.4) \]

Applying \(J \) to (3.4) and using (2.1) and (3.2), we have
\[F^2 X = -X + u(X)U + w(X)W + \theta(X)\zeta. \quad (3.5) \]

In the following, we say that \(F \) is the structure tensor field of \(M \).

Substituting (3.4) into (2.3) and using (2.4), we see that
\[\nabla_X \zeta = -\alpha FX + \beta(X - \theta(X)\zeta), \quad (3.6) \]
\[B(X,\zeta) = -\alpha u(X), \quad D(X,\zeta) = -\alpha w(X). \quad (3.7) \]

Applying \(\bar{\nabla}_X \) to \(\bar{g}(\zeta,N) = 0 \) and using (2.3), (2.5) and (2.11), we have
\[C(X,\zeta) = -\alpha v(X) + \beta \eta(X). \quad (3.8) \]

Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent, lightlike transversal and co-screen components, we obtain
\[T(X,Y) = \theta(Y)FX - \theta(X)FY, \quad (3.9) \]
\[B(X,Y) - B(Y,X) = \theta(Y)u(X) - \theta(X)u(Y), \quad (3.10) \]
\[D(X,Y) - D(Y,X) = \theta(Y)w(X) - \theta(X)w(Y). \quad (3.11) \]
where T is the torsion tensor with respect to ∇. From (3.10) and (3.11), we see that B and D are never symmetric. Replacing Y by ξ to (2.10) and using (2.9)\(_1\), (3.10) and the fact that $S(TM)$ is non-degenerate, we obtain

\[A_2^\varpi \xi = 0. \]

(3.12)

Applying ∇_X to (3.2) \sim (3.4) by turns and using (2.4), (2.5), (2.6), (2.9) \sim (2.10), (2.12) and (3.2) \sim (3.4), we have

\[B(X, U) = C(X, V), \quad B(X, W) = D(X, V), \quad C(X, W) = D(X, U), \]

(3.13)

\[\nabla_X U = F(A_N X) + \tau(X)U + \rho(X)W - \{\alpha \eta(X) + \beta \nu(X)\}, \]

(3.14)

\[\nabla_X V = F(A_N X) - \tau(X)V - \lambda(X)W - \beta \nu(X), \]

(3.15)

\[\nabla_X W = F(A_N X) + \lambda(X)U - \beta \omega(X), \]

(3.16)

\[(\nabla_X F)(Y) = u(Y)A_N X + w(Y)A_L X - B(X, Y)U - D(X, Y)V \]

+ \(\alpha\{g(X, Y)\zeta - \theta(Y)X\} + \beta\{f(X, Y)\zeta - \theta(Y)V\}, \]

(3.17)

\[(\nabla_X u)(Y) = -u(Y)\tau(X) - w(Y)\lambda(X) - \beta \theta(Y)u(X) - B(X, FV), \]

(3.18)

\[(\nabla_X v)(Y) = v(Y)\tau(X) + w(Y)\rho(X) - \theta(Y)\{\alpha \eta(X) + \beta \nu(X)\} \]

- \(g(A_N X, FV). \)

(3.19)

4. Recurrent and Lie recurrent structure tensors

Definition 1. The structure tensor field F of M is said to be recurrent [8] if there exists a smooth 1-form ϖ on M such that

\[(\nabla_X F)Y = \varpi(X)FV.\]

Definition 2. A half lightlike submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be statical [6] if $\nabla_X L \in \Gamma(S(TM))$ for any $X \in \Gamma(TM)$.

Remark 2. From (2.6) and (2.12), we show that Definition 2 is equivalent to the conditions: $\lambda = 0$ and $\rho = 0$. The condition $\lambda = 0$ is equivalent to the conception: M is irrotational, i.e., $\nabla_X \xi \in \Gamma(TM)$ [12]. The condition $\rho = 0$ is equivalent to the conception: M is solenoidal, i.e., $A_L X \in \Gamma(S(TM))$ [11].

Theorem 4.1. Let M be a half lightlike submanifold of an indefinite trans-Sasakian manifold M with a quarter-symmetric metric connection. If F is recurrent, then the following six statements are satisfied:

1. F is parallel with respect to the induced connection ∇ on M,
2. M is an indefinite cosymplectic manifold, i.e., $\alpha = \beta = 0$,
3. M is statical, i.e., $\lambda = 0$ and $\rho = 0$,
4. W is parallel vector field with respect to the connection ∇,
5. $H, J(tr(TM))$ and $J(S(TM^\perp))$ are parallel distributions on M,
6. M is locally a product manifold $C_\upsilon \times C_\omega \times M^2$, where C_υ is a null curve tangent to $J(tr(TM))$, C_ω is a spacelike curve tangent to $J(S(TM^\perp))$, and M^2 is a leaf of the distributions H.

Proof. Denote by \(\mu, \nu \) and \(\sigma \) the 1-forms on \(M \) such that
\[
\mu(X) = B(X, U) = C(X, V), \quad \sigma(X) = D(X, W),
\]
\[
\nu(X) = B(X, W) = D(X, V).
\]

(1) As \(F \) is recurrent, from the above definition and (3.17), we get
\[
\varpi(X)FY = u(Y)A_N X + w(Y)A_L X - B(X, Y)U - D(X, Y)W - B(X, Y)U = D(X, Y)W
\]
\[
+ \alpha\{g(X, Y)\zeta - \theta(Y)X\} + \beta\{\bar{g}(JX, Y)\zeta - \theta(Y)F\zeta\}.
\]
Replacing \(Y \) by \(\xi \) and using (2.9) and the fact that \(F\xi = -V \), we get
\[
-\varpi(X)V = \lambda(X)W + \beta u(X)\zeta.
\]
Taking the scalar product with \(U \) to (4.2), we obtain \(\varpi = 0 \). Thus \(F \) is parallel with respect to the connection \(\nabla \).

(2) Taking the scalar product with \(\zeta \) to (4.2), we get \(\beta = 0 \). Taking the scalar product with \(U \) to (4.1) satisfying \(\varpi = \beta = 0 \), we get
\[
u(Y)g(A_N X, U) + w(Y)g(A_L X, U) - \alpha \theta(Y)v(X) = 0.
\]
Replacing \(Y \) by \(\zeta \) to this equation, we have \(\alpha = 0 \). As \(\alpha = \beta = 0 \), \(\bar{M} \) is an indefinite cosymplectic manifold.

(3) Taking the scalar product with \(W \) to (4.2) and with \(N \) to (4.1), we have
\[
\lambda(X) = 0, \quad \rho(X) = \bar{g}(A_L X, N) = 0.
\]
As \(\lambda = 0 \), \(M \) is irrotational. As \(\rho = 0 \), \(M \) is solenoidal. Thus \(M \) is statical.

(4) Taking \(Y = U \) and \(Y = W \) to (4.3) by turns, we have
\[
g(A_N X, U) = C(X, U) = 0, \quad g(A_L X, U) = 0.
\]
Taking the scalar product with \(V \) and \(W \) to (4.1) by turns, we have
\[
B(X, Y) = u(Y)\mu(X) + w(Y)\nu(X), \quad D(X, Y) = w(Y)\sigma(X),
\]
due to (4.5)\(_2\). Replacing \(Y \) by \(V \) to the two equations of (4.6), we have
\[
B(X, V) = 0, \quad \nu(X) = B(X, W) = D(X, V) = 0.
\]
Taking \(Y = U \) and \(Y = W \) to (4.1) and using (4.5)\(_2\) and (4.7)\(_2\), we get
\[
A_N X = \mu(X)U, \quad A_L X = \sigma(X)W.
\]
Using (4.7)\(_2\) and the fact that \(S(TM) \) is non-degenerate, (4.6)\(_1\) reduces
\[
A_N^\ast X = \mu(X)V.
\]
Substituting (4.8)\(_1\) into (3.14) and (4.8)\(_2\) into (3.16), and using the facts that \(\lambda = \rho = \alpha = \beta = 0 \) and \(FU = FW = 0 \), we have
\[
\nabla_X U = \tau(X)U, \quad \nabla_X W = 0.
\]
From (4.10)\(_2\), we see that \(W \) is parallel vector field with respect to \(\nabla \).
(5) From (4.10), we see that both $J(ltr(TM))$ and $J(S(TM^\perp))$ are parallel distributions on M with respect to the connection ∇, that is,
\[\nabla_X U \in \Gamma(J(ltr(TM))), \quad \nabla_X W \in \Gamma(J(S(TM^\perp))). \]

On the other hand, taking $Y \in \Gamma(H)$ to (4.1), we have
\[B(X, Y) = 0, \quad D(X, Y) = 0, \quad \forall X \in \Gamma(TM), \quad \forall Y \in \Gamma(H). \quad (4.11) \]
By straightforward calculations from (2.8), (2.10), (3.4), (3.15), (3.16), (4.7), (4.11) and the facts that $\lambda = 0$ and $FZ \in \Gamma(H_o)$ for $Z \in \Gamma(H_o)$, we have
\[g(\nabla_X \xi, V) = -B(X, V) = 0, \quad g(\nabla_X \xi, W) = -\nu(X) = 0, \]
\[g(\nabla_X V, Y) = 0, \quad g(\nabla_X V, W) = -\lambda(X) = 0, \]
\[g(\nabla_X Z, V) = B(X, FZ) = 0, \quad g(\nabla_X Z, W) = D(X, FZ) = 0. \]
for all $X \in \Gamma(TM)$ and $Z \in \Gamma(H_o)$, or equivalently, we get
\[\nabla_X Y \in \Gamma(H), \quad \forall X \in \Gamma(TM), \quad \forall Y \in \Gamma(H). \]
Thus H is a parallel distribution on M with respect to ∇.

(6) As $J(ltr(TM))$, $J(S(TM^\perp))$ and H are parallel distributions and satisfied (3.1), by the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_u \times \mathcal{C}_w \times M^5$, where \mathcal{C}_u is a null curve tangent to $J(ltr(TM))$, \mathcal{C}_w is a spacelike curve tangent to $J(S(TM^\perp))$, and M^5 is a leaf of H. □

Definition 3. The structure tensor field F of M is said to be *Lie recurrent* [8] if there exists a smooth 1-form ϑ on M such that
\[(\mathcal{L}_X F) Y = \vartheta(X) F Y, \]
where \mathcal{L}_X denotes the Lie derivative on M with respect to X. The structure tensor field F is called *Lie parallel* if $\mathcal{L}_X F = 0$.

Theorem 4.2. Let M be a half lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M} with a quarter-symmetric metric connection. If F is Lie recurrent, then the following four statements are satisfied:

1. F is Lie parallel,
2. $\alpha = 0$, i.e., \bar{M} is not an indefinite Sasakian manifold,
3. the 1-forms ϑ and τ satisfy $d\vartheta = 0$ and $\tau = -\beta \vartheta$ on M,
4. the shape operator $A^*_F V$ satisfies
\[A^*_F V = 0, \quad A^*_F U = 0. \]

Proof.

(1) As $(\mathcal{L}_X F)Y = [X, FY] - F[X, Y]$, using (3.9) and (3.17), we get
\[\vartheta(X) FY = -\nabla_{FY} X + F \nabla_Y X - \vartheta(Y)\{X - \vartheta(X) \xi\} \]
\[+ u(Y) A_X X + w(Y) A_L X \]
\[- \{B(X, Y) - \vartheta(Y) u(X)\} U - \{D(X, Y) - \vartheta(Y) w(X)\} W \]
\[+ \alpha\{g(X, Y) \zeta - \vartheta(Y) X\} + \beta\{\bar{g}(JX, Y) \zeta - \vartheta(Y) FX\}, \quad (4.12) \]
by (3.5). Taking $Y = \xi$ to this equation and using (2.9), we have
\[-\vartheta(X)V = \nabla_YX + F\nabla_{\xi}X + \lambda(X)W + \beta u(X)\zeta. \]
(4.13)

Taking the scalar product with V, W and ζ to (4.13) by turns, we have
\[u(\nabla_YX) = 0, \quad w(\nabla_YX) = -\lambda(X), \quad \vartheta(\nabla_YX) = -\beta u(X). \]
(4.14)

Replacing Y by V to (4.12) and using the fact that $\vartheta(V) = 0$, we have
\[\vartheta(X)\xi = -\nabla_{\xi}X + F\nabla_YX - B(X,V)U - D(X,V)W + \alpha u(X)\zeta. \]
(4.15)

Applying F to this equation and using (3.5) and (4.14), we obtain
\[\vartheta(X)V = \nabla_YX + F\nabla_{\xi}X + \lambda(X)W + \beta u(X)\zeta. \]

Comparing this equation with (4.13), we get $\vartheta = 0$. Thus F is Lie parallel.

(2) Taking the scalar product with ζ to (4.15) with $\vartheta = 0$, we have
\[g(\nabla_{\xi}X, \zeta) = \alpha u(X). \]

Replacing X by U to this equation and using (3.14), we obtain $\alpha = 0$.

(3) Applying ∇_X to $\theta(\bar{Y}) = \bar{g}(\bar{Y}, \zeta)$ and using (1.1) and (2.3), we obtain
\[d\theta(\bar{X}, \bar{Y}) = \alpha \bar{g}(\bar{X}, J\bar{Y}), \]

due to the fact $\bar{\nabla}$ is metric. As $\alpha = 0$, we see that $d\theta = 0$.

Taking $X = W$ to (4.12) and using (2.12), (3.5), (3.10) and (3.11), we get
\[u(Y)A_{\bar{X}}W + w(Y)A_{\bar{X}}W - A_{\bar{X}}Y - F(A_{\bar{X}}FY) \]
\[- \lambda(FY)U - \vartheta(Y)W = 0. \]
(4.16)

Taking the scalar product with N and using (2.11)$_2$ and (2.12)$_1,2$, we have
\[D(FY, U) = w(Y)\rho(W) - \rho(Y). \]
(4.17)

Replacing Y by V and using (2.9)$_2$, we get $\rho(V) = \lambda(U)$, while taking $X = U$ to (4.14)$_2$ and using (3.14), we have $\rho(V) = -\lambda(U)$. Thus, $\rho(V) = \lambda(U) = 0$.

Taking $\bar{Y} = \xi$ to (4.16), we have $A_{\bar{X}}\xi = F(A_{\bar{X}}V) + \lambda(V)U$. Multiplying this by V and using (2.9), (2.12) and (3.11), we get $\lambda(V) = 0$. Therefore,
\[\rho(V) = 0, \quad \lambda(U) = 0, \quad \lambda(V) = 0. \]
(4.18)

Taking the scalar product with N to (4.12) and using (2.12)$_2$, we have
\[- \bar{g}(\nabla_{FY}X, N) + g(\nabla_YX, U) + w(Y)\rho(X) \]
\[- \vartheta(Y)\{\eta(X) + \beta v(X)\} = 0. \]
(4.19)

Replacing X by ξ to (4.19) and using (2.8) and (2.10)$_1,2$, we have
\[B(X, U) + \vartheta(X) - w(X)\rho(\xi) = \tau(FX). \]
(4.20)

Replacing X by U and using (3.13)$_1$ and the fact that $FU = 0$, we get
\[C(U, V) = B(U, U) = 0. \]
(4.21)
Replacing X by V to (4.19) and using (2.10), (3.15) and $\rho(V) = 0$, we have
\[B(FX, U) + \tau(X) + \beta\theta(X) = 0. \]

Taking $X = U$, $X = W$ and $X = \zeta$ to this equation by turns, we get
\[\tau(U) = 0, \quad \tau(W) = 0, \quad \tau(\zeta) = -\beta. \] \hspace{1cm} (4.22)

Replacing Y by ξ to (4.17) and using (3.11), we obtain
\[D(U, V) = \rho(\xi). \] \hspace{1cm} (4.23)

Taking $X = U$ to (4.12) and using (2.11), (3.5) and (3.10) \sim (3.14), we get
\[u(Y)A_\xi U + w(Y)A_\zeta U - \theta(Y)U \]
\[- F(A_\xi FY) - A_\xi Y - \tau(FY)U - \rho(FY)W = 0. \] \hspace{1cm} (4.24)

Taking the scalar product with V and using (3.13), (4.21) and (4.23), we get
\[B(X, U) + \theta(X) - w(X)\rho(\xi) = -\tau(FX). \]

Comparing this equation with (4.20), we obtain $\tau(FX) = 0$. Replacing X by FY and using (3.5) and (4.22), we have $\tau = -\beta\theta$ on M.

(4) Replacing Y by W to (4.24) and using $FW = 0$, we have $A_\xi U = A_\zeta W$.

Taking the scalar product with U and using (3.13)$_3$, we have
\[C(W, U) = C(U, W). \]

Taking the scalar product with W to (4.24), we have
\[\rho(FY) = -C(Y, W) + u(Y)C(U, W) + w(Y)D(U, W). \]

Taking the scalar product with U to (4.16) and using (3.13)$_3$, we have
\[\rho(FY) = C(Y, W) - u(Y)C(U, W) - w(Y)D(U, W). \]

From the last two equations, we obtain $\rho(FY) = 0$. It follows that $\rho(\xi) = 0$.

As $\tau(X) = \beta\theta(X)$, we have $\tau(V) = \tau(\xi) = 0$. Taking $X = \xi$ to (4.13) and using (3.12), we obtain $A_\xi^* V = 0$. From (3.10) and (4.20), we have $B(U, X) = 0$, i.e., $g(A_\xi^* U, X) = 0$. As $S(TM)$ is non-degenerate, we obtain $A_\xi^* U = 0$. \hspace{1cm} \Box

5. Indefinite generalized Sasakian space forms

Definition 4. An indefinite trans-Sasakian manifold $(\tilde{M}, J, \zeta, \theta, \bar{g})$ is called an indefinite generalized Sasakian space form, denote it by $\tilde{M}(f_1, f_2, f_3)$, if there exist three smooth functions f_1, f_2 and f_3 on \tilde{M} such that
\[
\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z} = f_1\{\bar{g}(\tilde{Y}, \tilde{Z})\tilde{X} - \bar{g}(\tilde{X}, \tilde{Z})\tilde{Y}\} \]
\[+ f_2\{\bar{g}(\tilde{X}, J\tilde{Z})\tilde{Y} - \bar{g}(\tilde{Y}, J\tilde{Z})\tilde{X} + 2\bar{g}(\tilde{X}, J\tilde{Y})J\tilde{Z}\} \]
\[+ f_3\{\theta(\tilde{X})\theta(\tilde{Z})\tilde{Y} - \theta(\tilde{Y})\theta(\tilde{Z})\tilde{X} \]
\[+ \bar{g}(\tilde{X}, \tilde{Z})\theta(\tilde{Y})\zeta - \bar{g}(\tilde{Y}, \tilde{Z})\theta(\tilde{X})\zeta\}, \]
where \tilde{R} is the curvature tensor of the Levi-Civita connection $\tilde{\nabla}$ on \tilde{M}.
Remark 3. The notion of generalized Sasakian space form \(\bar{M}(f_1, f_2, f_3)\) was introduced by Alegre et al. [1]. Indefinite Sasakian, Kenmotsu and cosymplectic space forms are important kinds of generalized Sasakian space forms such that

\[
f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c+1}{4}; \quad f_1 = \frac{c-3}{4}, f_2 = f_3 = \frac{c+1}{4}; \quad f_1 = f_2 = f_3 = \frac{c}{4}
\]

respectively, where \(c\) is a constant \(J\)-sectional curvature of each space forms.

Let \(\bar{R}\) be the curvature tensor of the quarter-symmetric metric connection \(\nabla\) on \(\bar{M}\). By directed calculations from (1.1) and (1.2), we see that

\[
\bar{R}(\bar{X}, \bar{Y})\bar{Z} = \bar{R}(\bar{X}, \bar{Y})\bar{Z} - \{(\nabla_X \theta)(Y) - (\nabla_Y \theta)(X)\}\bar{J}Z. \tag{5.2}
\]

Denote by \(R\) and \(R^*\) the curvature tensors of the induced connections \(\nabla\) and \(\nabla^*\) on \(M\) and \(S(TM)\) respectively. Using the local Gauss-Weingarten formulae, we have the Gauss-Codazzi equations for \(M\) and \(S(TM)\) such that

\[
\bar{R}(X, Y)Z = R(X, Y)Z + B(X, Z)A_N Y - B(Y, Z)A_N X \tag{5.3}
+ D(X, Z)A_L Y - D(Y, Z)A_L X
+ \{(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)
+ \tau(X)B(Y, Z) - \tau(Y)B(X, Z)
+ \lambda(X)D(Y, Z) - \lambda(Y)D(X, Z)
- \theta(X)B(FY, Z) + \theta(Y)B(FX, Z)\}N,
+ \{(\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z)
+ \rho(X)B(Y, Z) - \rho(Y)B(X, Z)
- \theta(X)D(FY, Z) + \theta(Y)D(FX, Z)\}L,
\]

\[
R(X, Y)PZ = R^*(X, Y)PZ + C(X, PZ)A_\xi Y - C(Y, PZ)A_\xi X \tag{5.4}
+ \{(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ)
- \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ)
- \theta(X)C(FY, PZ) + \theta(Y)C(FX, PZ)\}\xi.
\]

\[
R(X, Y)\xi = -\nabla^*_X (A^*_\xi Y) + \nabla^*_Y (A^*_\xi X) + A^*_\xi [X, Y]
- \tau(X)A^*_\xi Y + \tau(Y)A^*_\xi X
+ \{C(Y, A^*_\xi X) - C(X, A^*_\xi Y) - 2d\tau(X, Y)\}\xi. \tag{5.5}
\]

Comparing the tangential and lightlike transversal components of two equations of (5.3) and (5.2) and using (3.4), we obtain

\[
R(X, Y)Z = f_1\{g(Y, Z)X - g(X, Z)Y\} \tag{5.6}
+ f_2\{\bar{g}(X, JZ)FY - \bar{g}(Y, JZ)FX + 2\bar{g}(X, JY)FZ\}
+ f_3\{[\theta(X)Y - \theta(Y)X]\theta(Z) + [g(X, Z)\theta(Y) - g(Y, Z)\theta(X)]\zeta\}
- \{(\nabla_X \theta)(Y) - (\nabla_Y \theta)(X)\}\bar{J}Z
\]
Proof. Applying (2.11) Then \(\alpha \) Sasakian space form \(\bar{\nabla} \theta \) (3.4), (3.7), we have

\[
\begin{align*}
(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) + \tau(X)B(Y, Z) - \tau(Y)B(X, Z) \\
+ \lambda(X)D(Y, Z) - \lambda(Y)D(X, Z) - \theta(X)B(FY, Z) + \theta(Y)B(FX, Z) \\
+ \{(\bar{\nabla}_X \theta)(Y) - (\bar{\nabla}_Y \theta)(X)\}u(Z)
= f_2\{u(Y)\bar{g}(X, JZ) - u(X)\bar{g}(Y, JZ) + 2u(Z)\bar{g}(X, JY)\},
\end{align*}
\]

Taking the scalar product with \(N \) to (5.3) and then, substituting (5.4) and (5.2) into the left and right terms and using (2.12)_4, we obtain

\[
\begin{align*}
(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) \\
+ \tau(Y)C(X, PZ) - \rho(X)D(Y, PZ) + \rho(Y)D(X, PZ) \\
- \theta(X)C(FY, PZ) + \theta(Y)C(FX, PZ) \\
+ \{(\bar{\nabla}_X \theta)(Y) - (\bar{\nabla}_Y \theta)(X)\}v(PZ)
= f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\} \\
+ f_2\{v(Y)\bar{g}(X, JPZ) - v(X)\bar{g}(Y, JPZ) + 2v(PZ)\bar{g}(X, JY)\} \\
+ f_3\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ).
\end{align*}
\]

Theorem 5.1. Let \(M \) be a half lightlike submanifold of an indefinite generalized Sasakian space form \(M(f_1, f_2, f_3) \) with a quarter-symmetric metric connection. Then \(\alpha, \beta, f_1, f_2 \) and \(f_3 \) satisfy \(\beta = 0, \alpha \) is a constant on \(M \) and

\[
f_1 - f_2 = \alpha^2, \quad f_1 - f_3 = \alpha(\alpha + 1).
\]

Proof. Applying \(\nabla_Y \) to (3.13)_1: \(B(X, U) = C(X, V) \) and using (2.1), (2.10)_1, 2, (2.11)_1, 2, (3.4), (3.7)_1, (3.8), (3.14) and (3.15), we have

\[
(\nabla_X B)(Y, U)
= (\nabla_X C)(Y, V) - 2\tau(X)C(Y, V) - \lambda(X)C(Y, W) - \rho(X)B(Y, W) \\
- \alpha^2 u(Y)\eta(X) - \beta^2 u(X)\eta(Y) + \alpha\beta\{u(X)v(Y) - u(Y)v(X)\} \\
- g(A^X_C, F(A^X_C, V)) - g(A^X_C, F(A^X_C, X)).
\]

Substituting this equation into (5.7) with \(Z = U \) and using (3.13)_2, 3, we get

\[
\begin{align*}
(\nabla_X C)(Y, V) - (\nabla_Y C)(X, V) - \tau(X)C(Y, V) \\
+ \tau(Y)C(X, V) - \rho(X)D(Y, V) + \rho(Y)D(X, V) \\
- \theta(X)C(FY, V) + \theta(Y)C(FX, V) \\
+ (\bar{\nabla}_X \theta)(Y) - (\bar{\nabla}_Y \theta)(X) \\
+ (\alpha^2 - \beta^2)\{u(Y)\eta(X) - u(X)\eta(Y)\} \\
+ 2\alpha\beta\{u(X)v(Y) - u(Y)v(X)\}
= f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\}.
\end{align*}
\]

Comparing this equation with (5.8) such that \(PZ = V \), we obtain

\[
\{f_1 - f_2 - \alpha^2 + \beta^2\}u(Y)\eta(X) - u(X)\eta(Y)\]
\[
= 2\alpha\beta\{u(Y)v(X) - u(X)v(Y)\}.
\]
Applying ∇_X to $\eta(Y) = \bar{g}(Y, N)$ and using (2.4) and (2.5) we have

\[(\nabla_X \eta)(Y) = -g(A_{\alpha}X, Y) + \tau(X)\eta(Y).\]

Applying ∇_Y to (3.8) and using (2.11), (3.6), (3.8), (3.19) and $\alpha\beta = 0$, we have

\[(\nabla_X C)(Y, \zeta) = -(X\alpha)v(Y) + (\alpha\beta)\eta(Y) + \alpha^2\theta(Y)\eta(X) + \beta^2\theta(X)\eta(Y)
+ \alpha\{g(A_{\alpha}X, FY) + g(A_{\alpha}Y, FX) - v(Y)\tau(X) - w(Y)\rho(X)\}
- \beta\{g(A_{\alpha}X, Y) + g(A_{\alpha}Y, X) - \tau(X)\eta(Y)\}.

Substituting this equation and (3.8) into (5.8) such that $PZ = \zeta$, we get

\[
\begin{aligned}
&\{X\beta + [f_1 - f_3 - (\alpha^2 - \beta^2) - \alpha\theta(X)]\eta(Y)
- \{Y\beta + [f_1 - f_3 - (\alpha^2 - \beta^2) - \alpha\theta(Y)]\eta(X)
= \{X\alpha + \beta\theta(X)\}v(Y) - \{Y\alpha + \beta\theta(Y)\}v(X).
\end{aligned}
\]

Taking $X = \zeta$, $Y = \xi$ and $X = U$, $Y = V$ to this by turns, we obtain

\[f_1 - f_3 = (\alpha^2 - \beta^2) + \alpha - \zeta \beta, \quad U\alpha = 0.\]

Applying ∇_Y to (3.7) and using (3.6) and (3.18), we have

\[(\nabla_X B)(Y, \zeta) = -(X\alpha)v(Y) - \beta B(Y, X)
+ \alpha\{u(Y)\tau(X) + w(Y)\lambda(X) + B(X, FY) + B(Y, FX)\}.\]

Substituting this into (5.7) such that $Z = \zeta$ and using (3.7) and (3.10), we get

\[
\{X\alpha + \beta\theta(X)\}u(Y) = \{Y\alpha + \beta\theta(X)\}u(X).
\]

Taking $Y = U$ and using the fact that $U\alpha = 0$, we have $X\alpha + \beta\theta(X) = 0$.

Assume that $\beta \neq 0$. Then $X\alpha \neq 0$ due to $X\alpha = -\beta\theta(X)$. Applying ∇_X to $\alpha\beta = 0$ and using the fact that $X\alpha = -\beta\theta(X)$, we obtain

\[\alpha X\beta = \beta^2\theta(X).\]

Multiplying β to this result, we get $\beta = 0$. It is a contradiction to $\beta \neq 0$. Thus $\beta = 0$. Therefore, α is a constant, $f_1 - f_2 = \alpha^2$ and $f_1 - f_3 = \alpha(\alpha + 1).$

Definition 5. (1) A screen distribution $S(TM)$ is called **totally umbilical** [5] in M if there exists smooth function γ such that $A_{\alpha} = \gamma P$, or equivalently,

\[C(X, PY) = \gamma g(X, Y).\]

In case $\gamma = 0$, we say that $S(TM)$ is **totally geodesic** in M.

(2) A lightlike submanifold M is called **screen conformal** [6] if there exists non-vanishing smooth function φ on U such that $A_{\alpha} = \varphi A_{\alpha}^*$, or equivalently,

\[C(X, PY) = \varphi B(X, PY).\]

Theorem 5.2. Let M be a half lightlike submanifold of $\bar{M}(f_1, f_2, f_3)$ with a quarter-symmetric metric connection. If one of the following four statements
(1) F is recurrent,
(2) F is Lie recurrent,
(3) $S(TM)$ is totally umbilical,
(4) M is screen conformal,

is satisfied, then $M(f_1, f_2, f_3)$ is a flat manifold with an indefinite cosymplectic structure. In case (1), M is also flat. In case (3), $S(TM)$ is totally geodesic.

Proof. (1) By Theorem 4.1, we get (4.8), (4.10) and the results: $\alpha = \beta = 0$ and $\lambda = \rho = 0$. Since $\alpha = \beta = 0$, we have $f_1 = f_2 = f_3$ by Theorem 5.1.

Taking the scalar product with U to (4.8)$_{1, 2}$, we get

$$C(X, U) = 0, \quad D(X, U) = 0.$$

Applying ∇_X to $C(Y, U) = 0$ and using (4.10)$_1$, we obtain

$$(\nabla_X C)(Y, U) = 0.$$

Substituting the last equations into (5.8) with $PZ = U$, we have

$$(f_1 + f_2)\{v(Y)\eta(X) - v(X)\eta(Y)\} = 0.$$

Taking $X = V$ and $Y = \xi$ to this result, we obtain $f_1 + f_2 = 0$. Therefore, we see that $f_1 = f_2 = f_3 = 0$. Thus $\bar{M}(f_1, f_2, f_3)$ is flat.

As $f_1 = f_2 = f_3 = 0$, (5.6) is reduced to

$$R(X, Y)Z = B(Y, Z)A_N X - B(X, Z)A_N Y$$
$$+ D(Y, Z)A_L X - D(X, Z)A_L Y.$$

Using this, (2.10), (2.12), (4.8), (4.12) and the fact that $\lambda = 0$, we obtain

$$R(X, Y)Z = \{\mu(Y)\mu(X) - \mu(X)\mu(Y)\}u(Z)U$$
$$+ \{\sigma(Y)\sigma(X) - \sigma(X)\sigma(Y)\}w(Z)W = 0,$$

for all $X, Y, Z \in \Gamma(TM)$. Therefore $R = 0$ and M is also flat.

(2) By Theorem 4.2 and 5.1, we get $\alpha = 0$ and $\beta = 0$. Thus \bar{M} is an indefinite cosymplectic manifold. Since $\alpha = 0$, we have $f_1 = f_2 = f_3$ by Theorem 5.1. Also, since $\beta = 0$, by (3) of Theorem 4.2, we see that $\tau = 0$. Taking the scalar product with N to (5.6) with $Z = \xi$ and then, comparing this result with the radical component of (5.5) and using (2.9) and (2.12), we have

$$C(Y, A^*_N X) - C(X, A^*_N Y)$$
$$= f_2\{u(Y)v(X) - u(X)v(Y)\} + \lambda(X)\rho(Y) - \lambda(Y)\rho(X).$$

Taking $X = U$ and $Y = V$ to this and using (4.18) and the result (4) in Theorem 4.2, we get $f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$ and $\bar{M}(f_1, f_2, f_3)$ is flat.

(3) Assume that $S(TM)$ is totally umbilical. Then (3.8) is reduced to

$$\gamma\theta(X) = -\alpha v(X) + \beta \eta(X).$$

Replacing X by V, ξ and ζ to this equation by turns, we have $\alpha = 0$, $\beta = 0$ and $\gamma = 0$ respectively. Since $\alpha = \beta = 0$, \bar{M} is an indefinite cosymplectic manifold. As $\gamma = 0$, $S(TM)$ is totally geodesic.
As \(\alpha = 0, f_1 = f_2 = f_3 \) by Theorem 5.1. Taking \(PZ = U \) to (5.8) with \(C = 0 \) and using the facts that \(D(X, Uk) = C(X, W) = 0 \), we get
\[
(f_1 + f_2)\{v(Y)\eta(X) - v(X)\eta(Y)\} = 0.
\]
Taking \(X = \xi \) and \(Y = V \) to this equation, we get \(f_1 + f_2 = 0 \). Thus \(f_1 = f_2 = f_3 = 0 \) and \(M(f_1, f_2, f_3) \) is flat.

(4) Replacing \(Y \) by \(\zeta \) to (5.9) and using (3.7)_1 and (3.8), we have
\[
\alpha v(X) - \beta \eta(X) = \alpha \varphi u(X).
\]
Taking \(X = V \) and \(X = \xi \) to this equation by turns, we obtain \(\alpha = 0 \) and \(\beta = 0 \) respectively. As \(\alpha = \beta = 0 \), \(M \) is an indefinite cosymplectic manifold. Since \(\alpha = 0 \), we have \(f_1 = f_2 = f_3 \) by Theorem 5.1.

Applying \(\nabla_X \) to \(C(Y, PZ) = \varphi B(Y, PZ) \), we have
\[
(\nabla_X C)(Y, PZ) = (X \varphi)B(Y, PZ) + \varphi(\nabla_X B(Y, PZ)).
\]
Substituting this equation into (5.8) and using (5.7), we have
\[
\{X \varphi - 2 \varphi \tau(X)\}B(Y, PZ) - \{Y \varphi - 2 \varphi \tau(Y)\}B(X, PZ)
\]
\[
- \{\rho(X) + \varphi \lambda(X)\}D(Y, PZ) + \{\rho(Y) + \varphi \lambda(Y)\}D(X, PZ)
\]
\[
+ \{(\nabla_X \theta)(Y) - (\nabla_Y \theta)(X)\}g(\omega, PZ)
\]
\[
= f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\}
\]
\[
+ f_2\{g(\omega, Y)\bar{g}(X, JPZ) - g(\omega, X)\bar{g}(Y, JPZ) + 2g(\omega, PZ)\bar{g}(X, JY)
\]
\[
+ f_3\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ).
\]
where \(\omega = U - \varphi \). From (3.13)_1 and (5.9); (3.13)_2,3 and (5.9), we get
\[
B(X, \omega) = 0, \quad D(X, \omega) = 0.
\]
Applying \(\nabla_X \) to \(\theta(\xi) = 0 \) and \(\theta(V) = 0 \) by turns and using (2.4), (2.8), (2.10), (3.15) and the fact that \(\alpha = \beta = 0 \), we have
\[
(\nabla_X \theta)(\xi) = B(X, \xi) = 0, \quad (\nabla_X \theta)(V) = \beta \varphi u(X) = 0.
\]
Replacing \(PZ \) by \(\omega \) to (5.10) and using (5.11), we obtain
\[
- 2 \varphi\{(\nabla_X \theta)(Y) - (\nabla_Y \theta)(X)\}
\]
\[
= (f_1 + f_2)\{g(\omega, Y)\eta(X) - g(\omega, X)\eta(Y)\} - 4\varphi f_2 \bar{g}(X, JY)\}
\]
Taking \(X = \xi \) and \(Y = V \) to this equation and using (5.12), we get \(f_1 + f_2 = 0 \). Therefore, \(f_1 = f_2 = f_3 = 0 \) and \(M(f_1, f_2, f_3) \) is flat. \(\square \)

References

Dae Ho Jin
Department of Mathematics
Dongguk University
Gyeongju 780-714, Republic of Korea
E-mail address: jindh@dongguk.ac.kr