DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of the Gene Encoding Phytoene Desaturase from Kocuria gwangalliensis

Kocuria gwangalliensis 유래 phytoene desaturase 유전자의 cloning과 특성 연구

  • Seo, Yong Bae (Institute of Marine Biotechnology, Pukyong National University) ;
  • Choi, Seong Seok (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • Received : 2017.05.02
  • Accepted : 2017.06.10
  • Published : 2017.09.28

Abstract

Carotenoids such as phytoene, lycopene, and ${\beta}-carotene$ are used as food colorants, animal feed supplements, and for human nutrition and cosmetic purposes. Previously, we reported the isolation of a novel marine bacterium, Kocuria gwangalliensis, which produces a pink-orange pigment. Phytoene desaturase (CrtI), encoded by the gene crtI, catalyzes lycopene formation from phytoene and is an essential enzyme in the early steps of carotenoid biosynthesis. CrtI is one of the key enzymes regulating carotenoid biosynthesis and has been implicated as a rate-limiting enzyme of the pathway in various carotenoid synthesizing organisms. Here, we report the cloning of the crtI gene responsible for lycopene biosynthesis from K. gwangalliensis. The gene consisted of 1,584 bases encoding 527 amino acid residues. The nucleotide sequence of the crtI gene was compared with that of other species, including Kocuria rhizophila and Myxococcus xanthus, and was found to be well conserved during evolution. An expression plasmid containing the crtI gene was constructed (pCcrt1), and Escherichia coli cells were transformed with this plasmid to produce a recombinant protein of approximately 57 kDa, corresponding to the molecular weight of phytoene desaturase. Lycopene biosynthesis was confirmed when the plasmid pCcrtI was co-transformed into E. coli containing the plasmid pRScrtEB carrying the crtE and crtB genes required for lycopene biosynthesis. The results from this study will provide valuable information on the primary structure of K. gwangalliensis CrtI at the molecular level.

Phytoene, lycopene, ${\beta}-carotene$과 같은 카로티노이드는 식품의 착색제나 영양보조제, 사료첨가제, 화장품의 원료로 사용된다. 이전 연구에서 본 연구진은 분홍색의 색소를 생산하는 새로운 해양 세균인 K. gwangalliensis를 분리 동정하였다. Phytoene desaturase (CrtI) 효소는 crtI 유전자에 암호화되어 있으며, phytoene을 lycopene으로 전환하며, 카로티노이드 합성 초기 단계에 있어서 필수적이다. CrtI는 카로티노이드 생합성 조절의 주요 효소 중 하나이며, 다양한 카로티노이드를 생합성하는 생물들의 카로티노이드 생합성 경로에 있어서 속도 조절 단계에 관련이 있다. 본 논문에서는 K. gwangalliensis로부터 lycopene 생합성을 담당하는 crtI 유전자를 클로닝 하였으며, 이 유전자는 1,584개의 염기서열을 가지며, 527개의 아미노산을 암호화하고 있다. crtI 유전자의 염기 서열을 Kocuria rhizophila와 Myxococcus xanthus를 포함한 다른 종의 염기 서열과 비교한 결과, 진화 과정에서 잘 보존되어 있음을 확인하였다. crtI 유전자를 포함하는 발현 플라스미드를 구축하여 발현시킨 결과, 이 플라스미드를 함유하는 대장균은 약 57 kDa의 재조합 단백질을 생산화였으며, 이는 phytoene desaturase의 분자량에 해당한다. lycopene의 생합성은 lycopene 생합성에 필요한 crtE, crtB 유전자를 포함한 pRScrtEB plasmid를 E. coli에 형질전환 했을 때, Escherichia coli에서 합성되는 것을 확인하였다. 이 연구의 결과는 분자 수준에서 K. gwangalliensis CrtI의 1차 구조에 대한 폭 넓은 지식 기반을 제공할 것이다.

Keywords

References

  1. Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, et al. 2015. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572: 28-35. https://doi.org/10.1016/j.abb.2015.02.018
  2. Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24: 345-351. https://doi.org/10.1016/S0098-2997(03)00030-X
  3. Yokoyama A, Izumida H, Miki W. 1994. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotechnol. Biochem. 58: 1842-1844. https://doi.org/10.1271/bbb.58.1842
  4. Bubrick P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38: 237-239. https://doi.org/10.1016/0960-8524(91)90161-C
  5. Ludmila T, Peter S, Ivo S, Zdena P, Cathrin S, Susanne V, et al. 2005. Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov. Int. J. Syst. Evol. Microbiol. 55: 139-142. https://doi.org/10.1099/ijs.0.63304-0
  6. Harker M, Hirschberg J, Oren A. 1998. Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int. J. Syst. Evol. Microbiol. 48: 543-548.
  7. Tsubokura A, Yoneda H, Mizuta H. 1999. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 49: 277-282.
  8. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. 2004. Paracoccus haeundaensis sp. nov., a gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699-1702. https://doi.org/10.1099/ijs.0.63146-0
  9. Miller MW, Yoneyama M, Soneda M. 1976. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26: 286-291. https://doi.org/10.1099/00207713-26-2-286
  10. Phadwal K. 2005. Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene. 345: 35-43. https://doi.org/10.1016/j.gene.2004.11.038
  11. Lee JH, Kim YT. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene. 370: 86-95. https://doi.org/10.1016/j.gene.2005.11.007
  12. Schumann G, Nürnberger H, Krügel H, Sandmann G. 1996. Activation and analysis of crypticcrt genes for carotenoid biosynthesis from Streptomyces griseus. Mol. Genet. Genomics. 252: 658-666.
  13. Krugel H, Krubasik P, Weber K, Saluz H, Sandmann G. 1999. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta. 1439: 57-64. https://doi.org/10.1016/S1388-1981(99)00075-X
  14. Krubasik P, Kobayashi M, Sandmann G. 2001. Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Eur. J. Biochem. 268: 3702-3708. https://doi.org/10.1046/j.1432-1327.2001.02275.x
  15. Lee W, Lee DG. 2014. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J. Microbiol. Biotechnol. 24: 1232-1237. https://doi.org/10.4014/jmb.1406.06009
  16. Mann V, Pecker I, Hirschberg J. 1994. Cloning and characterization of the gene for phytoene desaturase (Pds) from tomato (Lycopersicon esculentum). Plant Mol. Biol. 24: 429-434. https://doi.org/10.1007/BF00024111
  17. Zhu YH, Jiang JG, Yan Y. 2005. Isolation and characterization of phytoene desaturase cDNA involved in $\beta$-carotene biosynthetic pathway in Dunaliella salina. J. Agric. Food Chem. 53: 5593-5597. https://doi.org/10.1021/jf0506838
  18. Bai J, Xu Y, Tang L, Zeng Y, Feng Y, Wang S, et al. 2004. Isolation and characterization of phytoene desaturase cDNA from stigma of Crocus sativus. Gaojishu Tongxun. 10: 21-24.
  19. Lee JH, Kim YT. 2006. Functional expression of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. Biotechnol. Lett. 28: 1167-1173. https://doi.org/10.1007/s10529-006-9072-0
  20. Seo, YB, Choi SS, Nam SW, Lee JH, Kim YT. 2009. Cloning and characterization of the zeaxanthin glucosyltransferase gene (crtX) from the astaxanthin-producing marine bacterium, Paracoccus haeundaensis. J. Microbiol. Biotechnol. 19: 1542-1546. https://doi.org/10.4014/jmb.0904.04033
  21. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW, Kim YT, et al. 2009. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59: 2769-2772. https://doi.org/10.1099/ijs.0.008482-0
  22. Lee JH, Seo YB, Jeong SY, Nam SW, Kim YT. 2007. Functional analysis of combinations in astaxanthin biosynthesis gene from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12: 312-317. https://doi.org/10.1007/BF02931110
  23. Zhang W, Sun Z. 2008. Random local neighbor joining: a new method for reconstructing phylogenetic trees. Mol. Phylogenet. Evol. 47: 117-128. https://doi.org/10.1016/j.ympev.2008.01.019
  24. Seo YB, Hwang HJ, Kim YT. 2011. Molecular characterization and tissue expression of carboxypeptidase H (CPH) gene in flounder (Paralichthys olivaceus). Biotechnol. Bioprocess Eng. 59: 374-382.
  25. Cahoon LB, Halkides CJ, Song BK, Williams CM, Dubay GR, Fries A, et al. 2012. Swine waste as a source of natural products: A carotenoid antioxidant. Agric. Sci. 3: 806-815.
  26. Adamczak R, Porollo A, Meller J. 2005. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59: 467-475. https://doi.org/10.1002/prot.20441
  27. Heider SA, Petra PW, Netzer R, Stafnes M, Brautaset T, Wendisch VF. 2014. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 1223-1235. https://doi.org/10.1007/s00253-013-5359-y
  28. Harada H, Misawa N. 2012. Novel approach in the biosynthesis of functional carotenoids in Escherichia coli. Methods. Mol. Biol. (Clifton, NJ) 892: 133-141.
  29. Zhang W, Hu X, Wang L, Wang X. 2014. Reconstruction of the carotenoid biosynthetic pathway of Cronobacter sakazakii BAA894 in Escherichia coli. PLoS One 9: e86739. https://doi.org/10.1371/journal.pone.0086739
  30. Hammerich L, Tacke F. 2013. Eat more carrots? Dampening cell death in ethanol-induced liver fibrosis by $\beta$-carotene. Hepatobiliary Surg. Nutr. 2: 248-251.
  31. Horvitz MA, Simon PW, Tanumihardjo SA. 2004. Lycopene and beta-carotene are bioavailable from lycopene 'red' carrots in humans. Eur. J. Clin. Nutr. 58: 803-811. https://doi.org/10.1038/sj.ejcn.1601880
  32. Stice CP, Wang XD. 2013. Carotenoids and alcoholic liver disease. Hepatobiliary Surg. Nutr. 2: 244-247.