DOI QR코드

DOI QR Code

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp.

Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산

  • Received : 2017.05.25
  • Accepted : 2017.09.19
  • Published : 2017.09.28

Abstract

The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.

본 연구에서는 미역을 이용하여 초고온 열산 가수분해, 효소 당화, 발효과정을 거쳐 아세톤, 부탄올, 에탄올을 생성하는 실험에 대해 진행하였다. 초고온 열산 가수분해에서의 최적 조건은 10%의 slurry, 270 mM의 황산, $160^{\circ}C$에서의 7.5분이었다. 초고온 열산 가수분해는 열처리 시간을 줄이고 적은 농도의 황산을 사용해도 더 많은 당과 적은 저해물질을 생성해 낸다는 장점이 있다. 효소 당화에서는 Viscozyme L (${\beta}-glucanase$, Novozymes)을 12 unit/ml으로 처리하는 것이 25.1 g/l로 가장 많은 단당을 생성했다. 발효에서는 C. acetobutylicum KCTC 1724이 비교적 낮은 pH 5.0에서 많은 아세톤, 부탄올, 에탄올을 생성하는 장점이 있었지만 mannitol을 모두 소비하지 못하는 단점이 있어 고농도의 mannitol 배지에 순치한 C. acetobutylicum KCTC 1724을 사용하여 발효를 진행하였다. 그 결과, 아세톤, 부탄올, 에탄올이 각각 0.99 g/l, 5.62 g/l, 2.44 g/l로 순치하지 않은 C. acetobutylicum KCTC 1724를 이용해 발효했을 때 보다 부탄올은 2.45 g/l, 에탄올은 1.10 g/l 증가했으며 수율($Y_{ABE}$)은 0.24에서 0.37로 증가했다.

Keywords

References

  1. Jang JS, Cho YK, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18. https://doi.org/10.1007/s00449-011-0611-2
  2. Cho YK, Kim HJ, Kim SK. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst. Eng. 36: 713-719. https://doi.org/10.1007/s00449-013-0895-5
  3. Ra CH, Nguyen TH, Jeong GT, Kim SK. 2016. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour. Technol. 209: 66-72. https://doi.org/10.1016/j.biortech.2016.02.106
  4. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y. 2010. Macroalgae as a Biomass Feedstock: A Preliminary Analysis, PNNL 19944. Pacific Northwest National Laboratory, Washington, USA.
  5. Li J, Chen X, Qi B, Luo J, Zhang Y, Su Y, et al. 2014. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process. Bioresour. Technol. 169: 251-257. https://doi.org/10.1016/j.biortech.2014.06.102
  6. Yu M, Zhang Y, Tang IC, Yang ST. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13: 373-382. https://doi.org/10.1016/j.ymben.2011.04.002
  7. Hetty VDW, Sperber BL, Houweling-Tan B, Bakker RR, Brandenburg W, Lopez-Contreras AM. 2013. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour. Technol. 128: 431-437. https://doi.org/10.1016/j.biortech.2012.10.094
  8. Jiang W, Wen Z, Wu M, Li H, Yang J, Lin J, et al. 2014. The effect of pH control on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum ATCC 824 with xylose and D-glucose and D-xylose mixture. Chin. J. Chem. Eng. 22: 937-942. https://doi.org/10.1016/j.cjche.2014.06.003
  9. Sanchez-Machado DI, Lopez-Cervantes J, Paseiro-Losada P, Lopez-Hernandez J. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85: 439-444. https://doi.org/10.1016/j.foodchem.2003.08.001
  10. Mandels M, Andreotti R, Roche C. 2009. Measurement of saccharifying cellulase. Biotechnol. Bioene. Symp. 6: 21-23.
  11. Kubicek CP. 1982. $\beta$-Glucosidase excretion by Trichoderma pseudokoningii: correlation with cell wall bound $\beta$-1.3-glucanase activities. Arch. Microbiol. 132: 349-354. https://doi.org/10.1007/BF00413388
  12. Cho HY, Ra CH, Kim SK. 2014. Ethanol production from the seaweed, Gelidium amansii using specific sugar acclimated yeasts. J. Microbiol. Biotechnol. 24: 264-269. https://doi.org/10.4014/jmb.1307.07054
  13. Grupe H, Gottschalk G. 1992. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl. Environ. Microbiol. 58: 3896-3902.