DOI QR코드

DOI QR Code

Characteristics with Casting Molding of Functional EPDM Through Grafting Polymerization

  • Yoon, Yoo Mi (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Donghyun (Dept. of Polymer Engineering, Pukyong National University) ;
  • Kim, Jeong Hoe (Dept. of Polymer Engineering, Pukyong National University) ;
  • Kim, Minseub (Dept. of Polymer Engineering, Pukyong National University) ;
  • Lee, Won Ki (Dept. of Polymer Engineering, Pukyong National University) ;
  • Park, Chan Young (Dept. of Polymer Engineering, Pukyong National University)
  • Received : 2017.09.04
  • Accepted : 2017.09.18
  • Published : 2017.09.30

Abstract

After the grafting of methacrylic acid (MA) to ethylene propylene diene monomer (EPDM), a new peak at $1704cm^{-1}$ corresponding to the carboxylic acid group was observed in the infrared (IR) spectrum. This characteristic MA molecule peak grew larger as the MA contents were increased. After casting films were prepared from pure EPDM and MA-grafted EPDM, differential scanning calorimeter (DSC) measurements were made the pure EPDM exhibited a melting point of approximately $45^{\circ}C$ while that of the MA-grafted EPDM was $135{\sim}140^{\circ}C$. As the graft ratio of MA increased, the absorbed heat capacity increased at temperatures near $135{\sim}140^{\circ}C$, indicating that an increased amount of MA reacted. Furthermore, owing to the addition of crystalline MA, it is expected that strength of the elastomer will improve as the graft ratio increases, as a result of the increased number of hard segments.

Keywords

References

  1. A. Eisenberg, Ions in Polymers, Ed.; American Chemical Society: Washington, DC (1980).
  2. C. X. Sun, M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible cross-linking of maleated ethylene/ propylene copolymers using hydrogen-bonding and ionic interactions", Macromolecules, 39, 3441 (2006). https://doi.org/10.1021/ma052691v
  3. M. A. J. van der Mee, R. M. A. l'Abee, G. Portale, J. G. P. Goossens, and M. van Duin, "Synthesis, structure, and properties of ionic thermoplastic elastomers based on maleated ethylene/propylene copolymers", Macromolecules, 41, 5493 (2008). https://doi.org/10.1021/ma8007509
  4. Prince Antony, S. K. De, "The effect of zinc stearate on meltprocessable ionomeric blends based on zinc salts of maleated high density polyethylene and maleated EPDM rubber", Polymer, 40, 1487 (1999). https://doi.org/10.1016/S0032-3861(98)00362-0
  5. G. Holden, M. R. Legge, and R. P. Quirk, Thermoplastic Elastomers: A Comprehensive Review, Eds., Hanser, Munich (1987).
  6. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible crosslinking of maleated ethylene/propylene rubber using ionic interactions, hydrogen bonding and a combination thereof", Rubber Chem. Technol., 81, 96 (2008). https://doi.org/10.5254/1.3548200
  7. G. Holden, Understanding Thermopalstic Elastomers, Ed., Hasnser, Munich (2000).
  8. S. K. De and A. K. Bhowmick, Thermoplastic Elastomers from Rubber-Plastic Blends, Eds., Ellis Horwood, New York (1990).
  9. S. Schick, Ionomers; Characterizations, Theory and Application, Ed.; CRC Press: Boca Raton, FL (1996).
  10. Y.-W. Chang, J. K. Mishra, S.-K. Kim, and D.-K. Kim, "Effect of supramolecular hydrogen bonded network on the properties of maleated ethylene propylene diene rubber/maleated high density polyethylene blend based thermoplastic elastomer", Materials Letters, 60, 3118 (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  11. T. Kurian, A. K. Bhattacharya, P. P. De, D. K. Tripathy, and S. K. De, Plastics, Rubber and Composites Processing and Applications, 24, 285 (1995).
  12. K. Chino, Jap. Rubber Soc., 78, 106 (2005). https://doi.org/10.2324/gomu.78.106
  13. Bengt Mattson and Bengt Stenberg, "Surface modification and stabilization of rubber materials: Plasma polymerization and photografting", J. Appl. Polym. Sci., 50, 1247 (1993). https://doi.org/10.1002/app.1993.070500716
  14. Olivier Colombani, Chantal Barioz, Laurent Bouteiller, Corinne Chaneac, Lionel Fomperie, Frederic Lortie, and Helene Montes, "Attempt toward 1D cross-linked thermoplastic elastomers: structure and mechanical properties of a new system", Macromolecules, 38, 1752 (2005). https://doi.org/10.1021/ma048006m
  15. Keisuke Chino and Makoto Ashiura, "Themoreversible crosslinking rubber using supramolecular hydrogen-bonding networks", Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  16. Keisuke Chino1, Makoto Ashiura1, Junichiro Natori1, Masahiro Ikawa1, and Tetsuji Kawazura1, "Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks", Rubber Chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  17. A. Eisenberg and J. S. Kim, Introduction to Ionomers, Eds.; John Wiley & Sons.
  18. Chih-Cheng Peng and Volker Abetz, "A simple pathway toward quantitative modification of polybutadiene: a new approach to thermoreversible cross-linking rubber comprising supramolecular hydrogen-bonding networks", Macromolecules, 38, 5575 (2005). https://doi.org/10.1021/ma050419f
  19. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols", Polymer, 49, 1239 (2008). https://doi.org/10.1016/j.polymer.2008.01.031