DOI QR코드

DOI QR Code

A Technical Review on the Protective Measures of High Temperature Corrosion of Boiler Heat Exchangers with Additives

첨가제를 이용한 보일러 열교환기의 고온부식 방지기술 현황

  • Kim, Beomjong (School of mechanical Engineering, Sungkyunkwan University) ;
  • Ryu, Changkook (School of mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Uendo (Thermochemical Energy System R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Youngdoo (Thermochemical Energy System R&BD Group, Korea Institute of Industrial Technology) ;
  • Lee, Jeongwoo (Hansol SeenTec) ;
  • Song, Jaehun (Hansol SeenTec)
  • Received : 2017.03.27
  • Accepted : 2017.05.17
  • Published : 2017.09.30

Abstract

As the use of waste and biomass increases in a power generation boiler, high temperature corrosion (HTC) problems of boiler heat exchangers are becoming very important. Chlorine of the low-rank fuels is mainly responsible for the HTC issues, which typically occur in the surface of high temperature heat exchanger like a superheater or reheater. In order to mitigate the problem, various approaches have been proposed in terms of design modification, material improvement, fuel pre-treatment and additive utilization. In this study, the current state of research and development focused on the additive method was investigated.

기후변화 대응을 위한 청정 화력발전 기술의 일환으로 폐기물과 바이오매스를 중심으로 한 신재생연료의 이용이 크게 증가함에 따라 특히 고온 고압 스팀 생산이 필요한 발전용 보일러 열교환기의 고온부식(High temperature corrosion) 문제가 심각한 현안으로 대두되고 있다. 이러한 문제점은 저급연료에 포함된 염화알칼리 성분이 보일러 내 열교환기 중 표면온도가 가장 높은 과열기(Superheater) 또는 재열기(Reheater)에 점착된 후 염소에 의해 부식이 가속화되어 일어난다. 이를 해결하기 위해 설계 변경, 재료 개선, 연료 전처리 등의 고온부식 회피 방법과 함께 첨가제를 이용한 고온부식 방지 기술이 활용되고 있다. 본 연구에서는 보일러에서 고온부식 방지를 위한 다양한 접근 중 특히 첨가제를 이용한 연구개발 현황을 소개한다.

Keywords

References

  1. Viklund, P., "Superheater Corrosion in Biomass and Waste Fired Boilers," KTH, Ph.D Thesis, (2013).
  2. Lee, D.-B., "High-Temperature Corrosion by Chlorides in Biomass-Fired Plants," J. The Korean Inst. Surface Eng., 49(1), 14-19 (2016). https://doi.org/10.5695/JKISE.2016.49.1.14
  3. Pettersson, J., Pettersson, C., Folkeson, N., Johansson, L.-G., Skog, E., and Svensson, J.-E., "The Influence of Sulphur Additions on the Corrosive the Environment in a Waste-Fired CFB Boiler," Mater. Sci. Forum, 522-523, 563-570 (2006). https://doi.org/10.4028/www.scientific.net/MSF.522-523.563
  4. Kawahara, Y., "High temperature Corrosion Mechanisms and Effect of Alloying Elements for Materials used in Waste Incineration Environment," Corrosion Sci., 44(2), 223-245 (2002). https://doi.org/10.1016/S0010-938X(01)00058-0
  5. Henderson, P., Szakalos, P., Pettersson, R., Andersson, C., and Hogberg, J., "Reducing Superheater Corrosion in Wood-Fired Boilers," Mater. and Corrosion, 57(2), 128-134 (2006). https://doi.org/10.1002/maco.200503899
  6. Bale, C. W., Belisle, E., Chartrand, P., Decterov, S. A., Eriksson, G., Hack, K., Jung, I. -H., Kang, Y. -B., Melancon, J., Pelton, A. D., Robelin, C., and Petersen, S., "FactSage Thermochemical Software and Databases - Recent Developments," CALPHAD 33(2), 295-311 (2009). https://doi.org/10.1016/j.calphad.2008.09.009
  7. Dean, J. A., "Lange's Handbook of Chemistry," Fifteenth Edition: McGraw-Hill, (1999).
  8. Reese, E., and Grabke, H. J., "Einfluss von Chloriden auf Die Oxidation des 2 1/4 Cr-1 Mo-Stahls," Mater. and Corrosion, 43(12), 547-557 (1992). https://doi.org/10.1002/maco.19920431202
  9. Reese, E., and Grabke, H. J., "Einfluss von Natriumchlorid auf Die Oxidation von Hochlegierten Chrom- und Chrom-Nickel-Stahlen," Mater. and Corrosion, 44(2), 41-47 (1993). https://doi.org/10.1002/maco.19930440204
  10. Steenari, B. M., Lundberg, A., Pettersson, H., Wilewska-Bien, M., and Andersson, D., "Investigation of Ash Sintering during Combustion of Agricultural Residues and the Effect of Additives," Energy Fuels, 23(11), 5655-5662 (2009). https://doi.org/10.1021/ef900471u
  11. Steenari, B. M., and Lindqvist, O., "High-temperature Reactions of Straw Ash and the Anti-Sintering Additives Kaolin and Dolomite," Biomass and Bioenergy, 14(1), 67-76 (1998). https://doi.org/10.1016/S0961-9534(97)00035-4
  12. Wang, L., Hustad, J. E., Skeriberg, O., Skjevrak, G., and Gronli, M., "A critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications," Energy Procedia, 20, 20-29 (2012). https://doi.org/10.1016/j.egypro.2012.03.004
  13. Fernandez Llorente, M. J., Diaz Arocas, P., Gutierrez Nebot, L., and Carrasco Garcia, J. E., "The Effect of the Addition of Chemical Materials on the Sintering of Biomass Ash," Fuel, 87(12), 2651-2658 (2008). https://doi.org/10.1016/j.fuel.2008.02.019
  14. Kyi, S., and Chadwick, B. L., "Screening of Potential Mineral Additives for use as Fouling Preventatives in Victorian Brown Coal Combustion," Fuel, 78, 845-855 (1999). https://doi.org/10.1016/S0016-2361(98)00205-1
  15. Uberoi, M., Punjak, W. A., and Shadman, F., "The Kinetics and Mechanism of Alkali Removal from Flue Gases by Solid Sorbents," Prog. Energy and Combust. Sci., 16(4), 205-211 (1990). https://doi.org/10.1016/0360-1285(90)90029-3
  16. Wang, L., Skjevrak, G., Hustad, J. E., and Gronli, M. G., "Effects of Sewage Sludge and Marble Sludge Addition on Slag Characteristics during Wood Waste Pellets Combustion," Energy & Fuels, 25, 5775-5785 (2011). https://doi.org/10.1021/ef2007722
  17. Pettersson, A., Amand, L. E., and Steenari, B. M., "Chemical Fractionation for the Characterization of Fly Ashes from Co-Combustion of Biofuels using Different Methods for Alkali Reduction," Fuel, 88, 1758-1772 (2009). https://doi.org/10.1016/j.fuel.2009.03.038
  18. Amand, L. E., Leckner, B., Eskilsson, D., and Tullin, C., "Deposits on Heat Transfer Tubes during Co-Combustion of Biofuels and Sewage Sludge," Fuel, 85(10-11), 1313-1322 (2006). https://doi.org/10.1016/j.fuel.2006.01.001
  19. Elled, A. L., Davidsson, K. O., and Amand, L. E., "Sewage Sludge as a Deposit Inhibitor when Co-Fired with High Potassium Fuels," Biomass and Bioenergy, 34, 1546-1554 (2010). https://doi.org/10.1016/j.biombioe.2010.05.003
  20. Wang, L., Skjevrak, G., Hustad, J., E., and Gronli, M. G., "Sintering Characteristics of Sewage Sludge Ashes at Elevated Temperatures," Fuel Proc. Technol., 96, 88-97 (2012). https://doi.org/10.1016/j.fuproc.2011.12.022
  21. Aho, M., Vainikka, P., Taipale, R., and Yrjas, P., "Effective New Chemicals to Prevent Corrosion due to Chlorine in Power Plant Superheaters," Fuel, 87, 647-654 (2008). https://doi.org/10.1016/j.fuel.2007.05.033
  22. Brostrom, M., Kassams, H., Helgesson, A., Berg, M., Andersson, C., Backman, R., and Nordin, A., "Sulfation of Corrosive Alkali Chlorides by Ammonium Sulfate in a Biomass Fired CFB Boiler," Fuel Proc. Technol., 88, 1171-1177 (2007). https://doi.org/10.1016/j.fuproc.2007.06.023
  23. Jimenez, S., and Ballester, J., "Influence of Operating Conditions and the Role of Sulfur in the Formation of Aerosols from Biomass Combustion," Combust. and Flame, 140, 346-358 (2005). https://doi.org/10.1016/j.combustflame.2004.12.004
  24. Jimenez, S., and Ballester, J., "Formation of Alkali Sulphate Aerosols in Biomass Combustion," Fuel, 86, 486-493 (2007). https://doi.org/10.1016/j.fuel.2006.08.005
  25. Thy, P., Jenkins, B. M., Grundvig, S., Shiraki, R., and Lesher, C. E., "High Temperature Elemental Losses and Mineralogical Changes in Common Biomass Ashes," Fuel, 85, 783-795 (2006). https://doi.org/10.1016/j.fuel.2005.08.020
  26. Thy, P., Lesher, C. E., and Jenkins, B. M., "Experimental Determination of High-Temperature Elemental Losses from Biomass Slag," Fuel, 79(6), 693-700 (2000). https://doi.org/10.1016/S0016-2361(99)00195-7
  27. Wu, H., Glarborg, P., Frandsem, F. J., Dam-Johansen, K., and Jensen, P. A., "Dust-Firing of Straw and Additives: Ash Chemistry and Deposition Behavior," Energy & Fuels, 25, 2862-2873 (2011). https://doi.org/10.1021/ef200452d
  28. Lindstrom, E., Sandstrom, M., Bostrom, D., and Ohman, M., "Slagging Characteristics during Combustion of Cereal Grains Rich in Phosphorus," Energy & Fuels, 21(2), 710-717 (2007). https://doi.org/10.1021/ef060429x
  29. Gilbe, C., Ohman, M., Lindstrom, E., Bostrom, D., Backman, R., Samuelsson, R., and Burvall, J., "Slagging Characteristics during Residential Combustion of Biomass Pellets," Energy and Fuels, 22(5), 3536-3543 (2008). https://doi.org/10.1021/ef800087x
  30. Grimm, A., Skoglund, N., Bostrom, D., and Ohman, M., "Bed Agglomeration Characteristics in Fluidized Quartz Bed Combustion of Phosphorus-Rich Biomass Fuels," Energy Fuels, 25(3), 937-947 (2011). https://doi.org/10.1021/ef101451e
  31. Glaborg, P., and Marshall, P., "Mechanism and Modeling of the Formation of Gaseous Alkali Sulfates," Combust. and Flame, 141(1-2), 22-39 (2005). https://doi.org/10.1016/j.combustflame.2004.08.014
  32. Aho, M., Silvennoinen, J., "Preventing Chlorine Deposition on Heat Transfer Surfaces with Aluminium - Silicon Rich Biomass Residue and Additive," Fuel, 83, 1299-1305 (2004). https://doi.org/10.1016/j.fuel.2004.01.011
  33. Wu, H., Jespersen, J. B., Aho, M., Paakkinen, K., Taipale, R., Frandsen, F. J., and Glarborg, P., "Modeling of Sulfation of Potassium Chloride by Ferric Sulfate Addition during Grate-firing of Biomass," International Flame Research Foundation, (2013).
  34. Kassman, H., Normann, F., and Amand, L. E., "The Effect of Oxygen and Volatile Combustible on the Sulphation of Gaseous KCl," Combust. and Flame, 160, 2231-2241 (2013). https://doi.org/10.1016/j.combustflame.2013.04.018
  35. Yrjas, P., "FBC Challenges : Current Research at AA-University," 71st IEA-FBC (2015).
  36. Kassman, H., Bafver, L., and Amand, L. E., "The Importance of $SO_2$ and $SO_3$ for Sulphation of Gaseous KCl - An Experimental Investigation in a Biomass Fired CFB Boiler," Combust. and Flame, 157, 1649-1657 (2010). https://doi.org/10.1016/j.combustflame.2010.05.012
  37. Andersson, S., Blomqvist, E. W., Bafver, L., Jones, F., Davidsson, K., Froitzheim, J., Karlsson, M., Larsson, E., and Liske, J., "Sulfur Recirculation for Increased Electricity Production in Waste-to-Energy Plants," Waste Manage., 34, 67-78 (2014). https://doi.org/10.1016/j.wasman.2013.09.002
  38. Tobiasen, L., Skytte, R., Pedersen, L. S., Pedersen, S. T., and Lindberg, M. A., "Deposit Characteristic after Injection of Additives to a Danish Straw-Fired Suspension Boiler," Fuel Proc. Technol., 88(11-12), 1108-1117 (2007). https://doi.org/10.1016/j.fuproc.2007.06.017
  39. Hindiyart, L., Frandsen, F., Livbjerg, H., Glarborg, P., and Marshall, P., "An Exploratory Study of Alkali Sulfate Aerosol Formation during Biomass Combustion," Fuel, 87(8-9), 1591-1600 (2008). https://doi.org/10.1016/j.fuel.2007.09.001
  40. Paneru, M., Maier, J., and Scheffknecht, G., "Mineral Additives to Mitigate Deposition and Corrosion Problems during Pulverized Biomass Combustion," Impacts of Fuel Quality on Power Production, 26th International Conference, Prague (Sep. 2016).
  41. Wang, G., Jensen, P. A., Wu, Hao., Frandsen, F. J., Sander, B., and Glarbog, P., "K-capture by al-si based Additives in an Entrained Flow Reactor," Impacts of Fuel Quality on Power Production, 26th International Conference, Prague (Sep. 2016).
  42. Tillman, D. A., Duong, D., and Miller, B., "Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers - Sources, Forms, Reactions, and Consequences: a Literature Review," Energy & Fuels, 23, 3379-3391 (2009). https://doi.org/10.1021/ef801024s
  43. Glazer, M., "Practical Experiences with Mitigating HT Corrosion by the ChlorOut Concept in Full Scale Boilers," International workshop on High Temperature Corrosion in Biomass Installations (2014).
  44. Hjornhede, A., "Reduction of Furnace Wall Corrosion by the use of Fuel Additives Tests in Fluidised Bed Test Rig with Waste and Demolition Wood," International workshop on High Temperature Corrosion in Biomass Installations (2014).
  45. Sharp, S., "Could Biomass Boilers be Operated at Higher Steam Efficiencies (Higher Temps.)?," International Workshop on High Temperature Corrosion in Biomass Installations (2014).
  46. Leckner, B., "Properties and Refinements of Biomass Fuels" III Joint Korean-Swedish Workshop for Research on Application of Fluidized Bed, Chang Won City, Korea (2011).
  47. Johansson, L-G., "Critical High Temperature Corrosion Issues in Biomass-Fired Powerplants," International workshop on High Temperature Corrosion in Biomass Installations, Jonkoping, Sweden (2014).
  48. Zhang, S., Mohamad, A., Rosalie, H., Lin, J. Y., and Li, C. Z., "Transformation of Chlorine in NaCl-loaded Victorian Brown Coal during the Gasification in Steam," J. Fuel Chem, and Tecjnology, 40(12), 1409-1414 (2012). https://doi.org/10.1016/S1872-5813(13)60005-5
  49. Blasing, M., Nazeri, K., and Muller, M., "Release of Alkali Metal, Sulphur and Chlorine Species during High-Temperature Gasification and Co-Gasification of Hard Coal, Refinery Residue, and Petroleum Coke," Fuel, 126, 62-68 (2014). https://doi.org/10.1016/j.fuel.2014.02.042
  50. Rahim, M. U., Gao, X., and Wu, H., "Release of Chlorine from the Slow Pysolysis of NaCl-loaded Cellulose at Low Temperatures," Proc. Combust. Inst., 35, 2891-2896 (2015). https://doi.org/10.1016/j.proci.2014.07.020
  51. Forsberg, C., Brostrom, M., Backman, R., Edvardsson, E., Badiel, S., Berg, M., and Kassman, H., "Principle, Calibration, and Application of the in Situ Alkali Chloride Monitor," Rev. of Sci. Instruments, 80, (2009).
  52. Vainio, E., Fleig, D., Brink, A., Andersson, K., Johnsson, F. and Hupa, M., "Experimental Evaluation and Field Application of a Salt Method for $SO_3$ Measurement in Flue Gases," Energy Fuel, 27, 2767-2775 (2013). https://doi.org/10.1021/ef400271t