DOI QR코드

DOI QR Code

Lethal Toxicity and Hematological Changes Exposed to Nitrate in Flatfish, Paralichthys olivaceus in Biofloc and Seawater

바이오플락 및 일반 해수에서 질산염의 넙치 (Paralichthys olivaceus)에 미치는 급성 독성 및 혈액학적 성상의 변화

  • Bae, Sun-Hye (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Ki Wook (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Su Kyoung (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Su-Kyoung (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jong-Hyun (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jun-Hwan (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 배선혜 (국립수산과학원 서해수산연구소) ;
  • 김기욱 (국립수산과학원 서해수산연구소) ;
  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 김종현 (국립수산과학원 서해수산연구소) ;
  • 김준환 (국립수산과학원 서해수산연구소)
  • Received : 2017.07.18
  • Accepted : 2017.08.08
  • Published : 2017.09.30

Abstract

Juvenile Paralichthys olivaceus (mean length $19.8{\pm}2.6cm$, mean weight $97.8{\pm}15.8g$) were exposed for 96 hours to different nitrate concentrations of 0, 62.5, 125, 250, 500, 1,000, and $1,500mg\;L^{-1}$ in biofloc and 0, 62.5, 125, 250, 500, and $1,000mg\;L^{-1}$ in seawater. Median lethal concentration values ($LC_{50}$, the concentration at which 50% of mortality occurred after 96 hours of exposure) of nitrate to P. olivaceus in biofloc and seawater were 1,226 and $597mg\;NO_3L^{-1}$ (P<0.05), respectively, revealing a higher toxicity of nitrate to P. olivaceus in seawater than in biofloc. In hematological parameters, hematocrit level in P. olivaceus exposed to nitrate was significantly increased only at a concentration of $1,000mg\;L^{-1}$ in biofloc and at concentrations higher than $250mg\;L^{-1}$ in seawater, but no significant changes in hemoglobin were found in biofloc and seawater. In plasma parameters, aspartate aminotransferase (AST) and alanine aminotransminase (ALT) were significantly increased by nitrate exposure in biofloc and seawater, but no significant changes in alkaline phosphatase (ALP) were found in biofloc and seawater. Results of this study indicate that nitrate exposure to P. olivaceus have a lethal toxic effect and alter hematological and plasma constituents of flatfish P. olivaceus. Given relatively lower toxicity of nitrate in biofloc than in seawater, the use of biofloc in aquaculture may reduce potential toxic effect caused by nitrate in feces and feed residue.

본 연구는 넙치 치어 (평균 체장 $19.8{\pm}2.6cm$, 평균 체중 $19.8{\pm}2.6cm$)를 바이오플락에 각 농도별 0, 62.5, 125, 250, 500, 1,000, $1,500mg\;L^{-1}$의 질산염과 일반 해수에 각 농도별 0, 62.5, 125, 250, 500, $1000mg\;L^{-1}$의 질산염을 96시간 노출시킨 후 생존율 및 혈액학적 변화를 비교하였다. 본 연구에서 넙치 치어의 반수치사농도 ($96h\;LC_{50}$, 96시간 노출 후 총 개체수의 50%가 폐사하는 농도)는 바이오플락 내의 질산염 노출 실험구에서는 $1,226mg\;NO_3L^{-1}$, 해수에서는 $597mg\;NO_3L^{-1}$ (P<0.05)였으며, 이는 넙치 유생이 높은 질산염에 노출되었을 경우, 같은 농도에서도 바이오플락 사육수 보다 일반 해수에서 생물에 독성의 영향이 크게 나타난다고 볼 수 있다. 혈액학적 분석 결과에서는 일반 해수에서 넙치의 hematocrit는 $250mg\;L^{-1}$ 이상의 농도에서 대조구에 비해 통계적으로 유의한 증가를 나타낸 반면, 바이오플락에서 넙치의 hematocrit는 $1,000mg\;L^{-1}$의 질산염 노출에서만 대조구 대비 통계적으로 유의한 증가를 나타냈다 (P<0.05). 그러나, hemoglobin은 일반 해수와 바이오플락 모두 질산염 농도 의존적 변화가 나타나지 않았다. 질산염 노출에 따른 혈장 효소 성분 분석 결과에서는 혈장 AST와 ALT의 경우, 바이오플락과 일반 해수 모두 각 농도별 질산염 노출에 따라 유의하게 증가하였으나, ALP의 경우 두 실험구에서 모두 질산염 농도 증가에 따른 유의한 차이를 나타내지 않았다. 본 연구에서는 바이오플락 환경에서 사육된 넙치가 일반해수에 사육된 넙치에 비해 단기간 질산염 노출에 대한 한계농도 및 혈액학적 성상에서 더 높은 질산염 내성을 가지는 것으로 나타났다. 이는 일반 해수보다 바이오플락 내의 질산염 노출이 상대적으로 생물에게 낮은 독성을 가지며, 이와 같은 효과는 양식에 있어 바이오플락을 이용함으로써 잠재적인 질산염 독성 영향을 경감시켜줄 수 있을 것이다.

Keywords

References

  1. Alonso A and JA Camargo. 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull. Environ. Contam. Toxicol. 70:1006-1012. https://doi.org/10.1007/s00128-003-0082-5
  2. Camargo JA, A Alonso and A Salamanca. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255-1267. https://doi.org/10.1016/j.chemosphere.2004.10.044
  3. Cheng SY and JC Chen. 2002. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid-base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquat. Toxicol. 61:181-193. https://doi.org/10.1016/S0166-445X(02)00053-X
  4. Harikrishnan R, MC Kim, JS Kim, C Balasundaram and MS Heo. 2011. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck & Schlegel) against Edwardsiella tarda. Fish Shellfish Immunol. 30:886-893. https://doi.org/10.1016/j.fsi.2011.01.013
  5. Iqbal F, IZ Qureshi and M Ali. 2004. Histopathological changes in the kidney of common carp, Cyprinus carpio, following nitrate exposure. J. Res. Sci. 15:411-418.
  6. Irshad AH, AK Verma, AMB Rani, G Rathore, N Saharan and AH Gora. 2016. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture 457:61-67. https://doi.org/10.1016/j.aquaculture.2016.02.011
  7. Jensen FB. 1996. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish (Astacus astacus). Aquat. Toxicol. 34:95-104. https://doi.org/10.1016/0166-445X(95)00030-8
  8. Kim JH and JC Kang. 2014. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicol. Environ. Saf. 104:96-102. https://doi.org/10.1016/j.ecoenv.2014.02.010
  9. Kim JH and JC Kang. 2015. The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicol. Environ. Saf. 115:33-39. https://doi.org/10.1016/j.ecoenv.2015.02.009
  10. Kim JH and JC Kang. 2016. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr6+) concentrations. Environ. Toxicol. Pharmacol. 41:152-158. https://doi.org/10.1016/j.etap.2015.12.001
  11. Kim JH and JC Kang. 2017. Effects of dietary chromium exposure to rockfish, Sebastes schlegelii are ameliorated by ascorbic acid. Ecotoxicol. Environ. Saf. 139:109-115. https://doi.org/10.1016/j.ecoenv.2017.01.029
  12. Kim MS, EY Min, JH Kim, JK Koo and JC Kang. 2015a. Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics. Fish Shellfish Immunol. 47:141-146. https://doi.org/10.1016/j.fsi.2015.08.027
  13. Kim SH, IK Hwang, JC Kang and JH Kim. 2015b. Changes of hematological parameters and plasma constituents in the olive flounder Paralichthys olivaceus exposed to TBT. J. Fish Patol. 28:87-92. https://doi.org/10.7847/jfp.2015.28.2.087
  14. Long L, J Yang, Y Li, C Guan and F Wu. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448:135-141. https://doi.org/10.1016/j.aquaculture.2015.05.017
  15. Scott G and RL Crunkilton. 2000. Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), Ceriodaphnia dubia, and Daphnia magna. Environ. Toxicol. Chem. 19:2918-2922. https://doi.org/10.1002/etc.5620191211
  16. van Bussel, CGJ, JP Schroeder, S Wuertz and C Schulz. 2012. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquaculture 326-329:163-167. https://doi.org/10.1016/j.aquaculture.2011.11.019
  17. Vedel NE, B Korsgaard and FB Jensen. 1998. Isolated and combined exposure to ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): effects on electrolyte status, blood respiratory properties and brain glutamine/glutamate concentrations. Aquat. Toxicol. 41:325-342. https://doi.org/10.1016/S0166-445X(97)00071-4
  18. Xu WJ and LQ Pan. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 412-413:117-124. https://doi.org/10.1016/j.aquaculture.2013.07.017