DOI QR코드

DOI QR Code

External and Cranial Characters of the Tscherskia triton in Jeju Island, Korea

제주도에 서식하는 비단털쥐 (Tscherskia triton)의 외부형태 및 두개골 특징

  • Park, Jun-Ho (Faculty of Science Education, Jeju National University) ;
  • Oh, Hong-Shik (Faculty of Science Education, Jeju National University)
  • 박준호 (제주대학교 과학교육학부) ;
  • 오홍식 (제주대학교 과학교육학부)
  • Received : 2017.07.24
  • Accepted : 2017.08.23
  • Published : 2017.09.30

Abstract

The purpose of this study was to investigate the characteristics of species by comparing the external shape traits and skull size of Tscherskia triton in Jeju Island from May 2014 to November 2016. Body weight, head-body length, ear length, and hind-foot length were not statistically significant (p>0.05), but tail length was statistically significant in females compared to males (p=0.003). To examine the secondary sexual dimorphism characteristics of the collected T. triton, B_HR, T_HR, E_HR, and H_HR were calculated based on the head-body length, and only T_HR was statistically significant (p=0.003). Because of comparing male and female averages, among the 21 traits, the greatest length of skull (GLS; p=0.020) and occipitonasal length (ONL; p=0.014) were statistically significant and length of incisive foramen (LIF) was statistically significant, when the significance level was 90%. However, the other 18 traits did not show statistically significant differences between males and females (p>0.05). Other than GLS, ONL, interorbital breadth (IB), and breadth of occipital foramen (BOF), there was female-biased SSD. The results of this study are the analysis of external morphology and skull characteristics of T. triton in Jeju Island and will be used as basic data to understand the morphological characteristics of T. triton. In addition, the data can be used as a basic information to compare characteristics of T. triton, which is known as a single species, inhabited in China and Russia. The data will play an important role in biogeography and ecology research of T. triton, based on geographical conditions, climate effects, and habitat environment.

연구는 2014년 5월부터 2016년 11월까지 제주도에 서식하는 비단털쥐의 외부형태 형질과 두개골의 크기를 비교하여 종의 특징을 규명하기 위하여 이루어졌다. 채집된 암컷 9개체, 수컷 5개체는 모두 성체였고, 암수의 체중 및 외부형태 형질 비교에서 체중, 머리와 몸통의 길이, 귀의 길이, 뒷발의 길이에 있어서는 통계적으로 유의한 차이는 없었지만 (p>0.05), 꼬리 길이에 있어서는 암컷 우성의 특징을 보이는 것으로 나타났다 (p=0.003). 채집한 비단털쥐의 2차 성적이형 (secondary sexual dimorphism) 특성을 살펴보기 위해 머리 - 몸통 길이를 기준으로 B_HR, T_HR, E_HR, H_HR을 산출하여 분석한 결과, 오직 꼬리 길이에 대한 머리 - 몸통 길이 (T_HR)에서만이 통계적으로 유의하였다 (p=0.003). 두개골 크기의 암수 평균값과 성적이형을 비교한 결과, 전체 21가지 형질 중 GLS (p=0.020)와 ONL (p=0.014)는 통계적으로 유의하였고, LIF는 유의수준 90% 기준으로 할 경우 통계적으로 유의하였다. 하지만 이 이외의 18가지 형질은 암수간의 통계적으로 유의한 차이를 보이지 않았다 (p>0.05). 머리뼈 최대 길이 (GLS), 코 - 후두부 길이 (ONL), 눈확 사이의 폭 (IB)과 대후두공횡경 (BOF)을 제외한 나머지 17가지 부위인 뒤통수뼈관절융기 - 치조점 사이 길이 (CL), 머리뼈 바닥길이 (BL), 코뼈의 길이 (NAL), 앞머리뼈의 길이 (FL), 뒷머리뼈의 길이 (PrL), 절치공의 길이 (LIF), 고포뼈의 길이 (ABL), 협골공의 폭 (ZB), 입술의 폭 (BR), 위턱어금니열의 길이(LUM), 위턱이틀 사이 모서리길이 (LUD), 아래턱뼈의 길이(LM), 아래턱뼈의 높이 (HM), 아래턱어금니열의 길이 (LLM), 앞니 길이 (LUI), 관절 높이 (AH), 뇌함 최대 너비 (MWB)는 암컷 편향적 성적 크기 차이 (female-biased SSD)가 있었다. 이에 따라 비단털쥐의 암컷이 수컷에 비해 꼬리 길이가 길고, 두개골 또한 암컷 편향적 성적 크기 차이가 있다는 것이 확인되었다. 이 연구결과는 제주도에 서식하는 비단털쥐의 외부형태 형질과 두개골의 특징을 분석한 것으로 비단털쥐의 생물학적 특성을 이해하는 데 필요한 자료로 널리 활용될 것이다. 또한 중국과 러시아 등 국한된 지역에 서식하며, 단일 종으로 알려진 비단털쥐의 특징을 비교하는 자료로 이용될 수 있을 것이며, 향후 지리적 조건, 기후 영향, 서식환경에 따른 비단털쥐의 생물지리학 및 생태학적 연구에 크게 기여할 수 있을 것이다.

Keywords

References

  1. Blanckenhorn WU. 2000. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75:385-407. https://doi.org/10.1086/393620
  2. Conroy CJ and AM Gupta. 2011. Cranial morphology of the California vole (Microtus californicus, Cricetidae) in a contact zone. Biol. J. Linn. Soc. 104:264-283. https://doi.org/10.1111/j.1095-8312.2011.01722.x
  3. Foster JB. 1964. Evolution of mammals on islands. Nature 202:234-235. https://doi.org/10.1038/202234a0
  4. Gaillard JM, M Festa-Bianchet, NG Yoccoz, A Loison and C Toigo. 2000. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31:367-393. https://doi.org/10.1146/annurev.ecolsys.31.1.367
  5. Isaac JL. 2005. Potential causes and life-history consequences of sexual size dimorphism in mammals. Mamm. Rev. 35:101-115. https://doi.org/10.1111/j.1365-2907.2005.00045.x
  6. Jackson TP and RJ Van Aarde. 2003. Sex-and species-specific growth patterns in cryptic African rodents, Mastomys natalensis and M. coucha. J. Mammal. 84:851-860. https://doi.org/10.1644/BPR-001
  7. Jo YS. 2015. Mammals of Korea: Conservation and management. Ph. D. thesis. Texas Tech Univ., Texas, U.S.A., 703pp.
  8. Jo YS, TW Kim, BJ Choi and HS Oh. 2012. Current status of terrestrial mammals on Jeju Island. J. Spec. Res. 1:249-256. https://doi.org/10.12651/JSR.2012.1.2.249
  9. Kim GR and HS Oh. 2017. Biological characteristics and current status of nutria (Myocastor coypus) introduced in Jeju Island. J. Environ. Impact Assess. 26:1-10. https://doi.org/10.14249/eia.2017.26.1.1
  10. Kim HC, TA Klein, HJ Kang, SH Gu, SS Moon, LJ Baek, ST Chong, ML O'Guinn, JS Lee, MJ Turell and JW Song. 2011. Ecological surveillance of small mammals at Dagmar North training area, Gyeonggi Province, Republic of Korea, 2001-2005. J. Vector Ecol. 36:42-54. https://doi.org/10.1111/j.1948-7134.2011.00139.x
  11. Kim HC, WK Kim, TA Klein, ST Chong, PV Nunn, JA Kim, SH Lee, JS No and JW Song. 2017. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site, Republic of Korea. PloS One 12:e0176514. https://doi.org/10.1371/journal.pone.0176514
  12. Kim TW, SM Joo, AR Oh, SJ Park, SH Han and HS Oh. 2013. Morphological characteristics and habitat types of Rattus norvegicus and R. tanezumi collected in Jeju Island. Korean J. Environ. Ecol. 27:550-560. https://doi.org/10.13047/KJEE.2013.27.5.550
  13. Koh HS, J Eger, JG Oh, B Lim, BK Lee, KH Jang, ST In, JH Lee, KS Kim and GH Kweon. 2013. Genetic distinctiveness of the greater long-tailed hamster, Tscherskia triton nestor (Rodentia: Mammalia), from Jeju Island, Korea: cytochrome oxidase I and cytochrome b sequence analyses. Anim. Cells Syst. 17:31-35. https://doi.org/10.1080/19768354.2012.754379
  14. Lawlor TE. 1982. The evolution of body size in mammals: evidence from insular population in Mexico. Amer. Nat. 119:54-72. https://doi.org/10.1086/283890
  15. Levenson H. 1990. Sexual size dimorphism in chipmunks. J. Mammal. 71:161-170. https://doi.org/10.2307/1382163
  16. Li CH, JP Dong, ZL Xiao and ZB Zhang. 2010. Eighteen novel microsatellite markers for the greater long-tailed hamster (Tscherskia triton). Conserv. Genet. 11:1227-1230. https://doi.org/10.1007/s10592-009-9929-6
  17. Li S and SY Liu. 2014. Geographic variation of the large-eared field mouse (Apodemus latronum Thomas, 1911) (Rodentia: Muridae) with one new subspecies description verified via cranial morphometric variables and pelage characteristics. Zool. Stud. 53:23. https://doi.org/10.1186/s40555-014-0023-5
  18. Lindenfors P, JL Gittleman and KE Jones. 2007. Sexual size dimorphism in mammals. pp. 16-26. In Sex, size and gender roles: evolutionary studies of sexual size dimorphism (Fairbairn DJ, WU Blanckenhorn and T Szekely eds.). Oxford University Press.
  19. Lomolino MK. 1985. Body size of mammals on islands: the island rule reexamined. Amer. Nat. 125:310-315. https://doi.org/10.1086/284343
  20. Markov G, G Csorba, M Kocheva and M Gospodinova. 2012. Skull features of the common vole (Microtus arvalis sensu lato) from Hungary: craniometrical evidence for its taxonomic detachment. Turk. J. Zool. 36:283-290.
  21. Martin JGA, M Festa-Bianchet, SD Cote and DT Blumstein. 2013. Detecting between-individual differences in hindfoot length in populations of wild mammals. Can. J. Zool. 91:118-123. https://doi.org/10.1139/cjz-2012-0210
  22. Millien V. 2006. Morphological evolution is accelerated among island mammals. PLoS Biology 4:e321. https://doi.org/10.1371/journal.pbio.0040321
  23. Millien V and J Damuth. 2004. Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evolution. 58:1353-1360. https://doi.org/10.1111/j.0014-3820.2004.tb01713.x
  24. Ochocinska D and JRE Taylor. 2003. Bergmann's rule in shrews: geographical variation of body size in Palearctic Sorex species. Biol. J. Linn. Soc. 78:365-381. https://doi.org/10.1046/j.1095-8312.2003.00150.x
  25. Park JH and HS Oh. 2017. Breeding and development of the Tscherskia triton in Jeju Island. Korean J. Environ. Ecol. 31:152-165. https://doi.org/10.13047/KJEE.2017.31.2.152
  26. Park YS, WS Lee, JT Kim and HS Oh. 2011. Morphological examination of the Siberian roe deer Capreolus pygargus in South Korea. J. Anim. Vet. Adv. 10:2847-2878.
  27. Smith AT and Y Xie. 2013. Mammals of China. Princeton University Press, Princeton, New Jersey. 395pp.
  28. Smith HF, CE Terhune and CA Lockwood. 2007. Genetic, geographic, and environmental correlates of juman temporal bone varation. Am. J. Phys. Anthropol. 134:312-322. https://doi.org/10.1002/ajpa.20671
  29. Song M, Z Zhang, K Neumann and R Gattermann. 2005. Sex-biased dispersal of greater long-tailed hamster (Tscherskia triton) revealed by microsatellites. Can. J. Zool. 83:773-779. https://doi.org/10.1139/z05-060
  30. White TA and JB Searle. 2007. Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. J. Biogeogr. 34:356-363. https://doi.org/10.1111/j.1365-2699.2006.01599.x
  31. Won PH and JI Lee. 1975. Studies on the ecological observation of Cricetulus triton nestor. Dongguk Univ. Res. Bull. 5:271-291.
  32. Xue H, M Zhong, J Xu and L Xu. 2014. Geographic distance affects dispersal of the patchy distributed greater long-tailed hamster (Tscherskia triton). PloS One 9:e99540. https://doi.org/10.1371/journal.pone.0099540
  33. Yan C, T Xu, X Cao, F Wang, S Wang, S Hao, Yang H, H Li and Z Zhang. 2014. Temporal change in body mass of two sympatric hamster species and implications for population dynamics. Can. J. Zool. 92:389-395. https://doi.org/10.1139/cjz-2014-0004
  34. Yoon MH, SH Han, HS Oh and JK Kim. 2004. The Mammals of Korea. Dongbang Media, Seoul. pp. 102-141.
  35. Zannese A, A Baisse, JM Gaillard, AJM Hewison, K Saint-Hillaire, C Toigo, G van Laere and N Morellet. 2006. Hind foot length: an indicator for monitoring roe deer populations at a landscape scale. Wildl. Soc. B. 34:351-358. https://doi.org/10.2193/0091-7648(2006)34[351:HFLAIF]2.0.CO;2
  36. Zhang J. 1986. Study on the population age-structure of the greater long-tailed hamsters in beijing-tianjin area. Acta Ther. Sin. 6:131-138.
  37. Zhang ZB, L Hinds, G Singleton and ZW Wang. 1999. Rodent Biology and Management. Australian Centre for International Agricultural Research Canberra. 146pp.
  38. Zidarova S. 2015. Is there sexual size dimorphism in shrews? a case study of six European species of the family Soricidae. Acta Zool. Bulg. 67:19-34.