DOI QR코드

DOI QR Code

(C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using (C10H8N2H)2Cr2O7

  • 박영조 (강원대학교 교양학부) ;
  • 김영식 (강원대학교 교양학부) ;
  • 김수종 (한라대학교 신소재화학공학과)
  • Park, Young Cho (The School of General Studies, Kangwon National University) ;
  • Kim, Young Sik (The School of General Studies, Kangwon National University) ;
  • Kim, Soo Jong (Department of Advanced Materials & Chemical Engineering, Halla University)
  • 투고 : 2017.07.04
  • 심사 : 2017.09.04
  • 발행 : 2017.10.10

초록

4,4'-비피리딘과 크롬(VI) 산화물을 반응시켜 $(C_{10}H_8N_2H)_2Cr_2O_7$을 합성하였다. 적외선분광광도법(FT-IR)과 원소분석으로 구조를 확인하였다. 여러 가지 용매 하에서 $(C_{10}H_8N_2H)_2Cr_2O_7$을 이용하여 벤질알코올의 산화반응을 측정한 결과, 용매의 유전상수 값이 증가함에 따라 반응수율이 증가했다. 그 순서는 DMF (N,N'-디메틸포름아미드) > 아세톤 > 클로로포름 > 시클로헥센이었다. $H_2SO_4$ 촉매를 이용한 DMF 용매 하에서, $(C_{10}-H_8N_2H)_2Cr_2O_7$은 벤질알코올(H)과 그의 유도체들($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$)을 효과적으로 산화시켰다. 전자받개 그룹들은 반응속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰고, Hammett 반응상수(${\rho}$) 값은 -0.70 (308 K)이었다. 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어났다.

$(C_{10}H_8N_2H)_2Cr_2O_7$ was synthesized by reacting 4,4'-bipyridine and chromium (VI) trioxide. The structure of the product was characterized with FT-IR (infrared spectroscopy) and elemental analysis. The oxidation of benzyl alcohol using $(C_{10}H_8N_2H)_2Cr_2O_7$ in various solvents showed that the reactivity increased with the increase of the solvent dielectric constant, in the order of DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. In the presence of DMF, an acidic catalyst such as $H_2SO_4$ $(C_{10}H_8N_2H)_2Cr_2O_7$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

키워드

참고문헌

  1. H. B. Davis, R. M. Sheets, and W. W. Pandler, High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants, Heterocycles, 22, 2029-2035 (1984). https://doi.org/10.3987/R-1984-09-2029
  2. M. R. Pressprich, R, D. Willett, and H. B. Davis, Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form $Cr_nO_{3n+1}^{2-}$, Inorg. Chem., 27, 260-264 (1988). https://doi.org/10.1021/ic00275a009
  3. M. K. Mahanti and D. Dey, Kinetics of Oxidation of Substituted Benzyl Alcohols by Quinolinium Dichromate, J. Org. Chem.. 55, 5848-5850 (1990). https://doi.org/10.1021/jo00310a015
  4. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031
  5. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2322 (1994). https://doi.org/10.1246/bcsj.67.2320
  6. M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, Quinolinium Dichromate Oxidation of Diols: A Kinetics Study, J. Org. Chem., 61, 8875-8877 (1996). https://doi.org/10.1021/jo961079m
  7. R. Tayebee, Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach, J. Korean Chem. Soc., 52, 23-29 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  8. Y. S. Kim, H. Choi, and I. S. Koo, Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Subsitituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 31, 3279-3282 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279
  9. T. J. Cho and K. S. Yoo, Synthesis of Pd/$TiO_2$ Catalyst for Aerobic Benzyl Alcohol Oxidation, Appl. Chem. Eng., 25, 281-285 (2014). https://doi.org/10.14478/ace.2014.1028
  10. K. W. Kim, S. M. Lee, and S. C. Hong, A Study on Characterization for Catalytic Oxidation of Nitrogen Monoxide Over Mn/$TiO_2$ Catalyst, Appl. Chem. Eng., 25, 474-480 (2014). https://doi.org/10.14478/ace.2014.1061
  11. T. J. Cho and K. S. Yoo, Preparation of Pd/$TiO_2$ Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation, Appl. Chem. Eng., 26, 351-355 (2015). https://doi.org/10.14478/ace.2015.1044