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Abstract 
 

In this paper, a novel multiple description image coding (MDC) scheme is proposed, which is 

based on the characteristics of the human visual model. Due to the inherent characteristics of 

human vision, the human eye can only perceive the change of the specific thresholds, that is, the 
just noticeable difference (JND) thresholds. Therefore, JND model is applied to improve   MDC 

syetem. This paper calculates the DCT coefficients firstly, and then they are compared with the 

JND thresholds. The data that is less than the JND thresholds can be neglected, which will 

improve the coding efficiency. Compared with other existing methods, the experimental results of 
the proposed method are superior. 
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1. Introduction 

In high speed network environment, multimedia information is very important [1] [2]. However, 

the traditional packet-based data transmission usually faces the problem of packet loss or error, 
which will affects the efficiency of information transmission. In recent years, multiple description 

coding (MDC), as an effective solution, has begun to be concerned. When only one description is 

received, the information can be recovered roughly but acceptable. And the quality of the 
reconstruction will be better with the increase of the received descriptions [3]-[5]. 

In the past years, a variety of MDC methods has been proposed. In [6], Vaishampayan designs 

the source quantizer skillfully, and puts forward a new multiple description scalar quantization 
(MDSQ) scheme, which is asymptotically near optimal at high rates [7]. In [8], a two-stage 

modified MDSQ (MMDSQ) is also close to the optimal.  

  The MDSQ method is extended to more than two descriptions in  [9]. Then, in [10], MDLVQ 

is presented Source splitting is another method of MDC. In [11], source separation is designed 
firstly, where, the source is divided into odd and even samples, and each subset is encoded with 

DPCM. 

Transform coding is used in JPEG 2000 with two rates for two descriptions in [12], which is 
called RD-MDC. Then RD-MDC is extended to more than two descriptions in [13], where each 

JPEG 2000 is also coded with two rates. In [14], a multiple rates method is presented. In this 

method, M different rates are applied to code each subset.  
In [15], the pairwise correlating transform (PCT) ,which govern the redundancy by a set of 2

×2 correlating transform, is presented. If one coefficient is lost, its counterpart in the other 

description can estimate it. However, PCT has poor performance at high rates, because linear 
prediction [16] [17] is used to predict redundancy, which is similar to the method in [11]. In [18], 

a generalized PCT (GPCT) encoding the prediction residual of each description is proposed.  

In [19], a prediction compensated MDC (PCMDC) method is proposed in the light of 
two-descriptions coding. The source is divided into two subsets, each of them is coded, and the 

coding result is used as the basis for one description. Each description also encodes the predictive 

redundancy of another subset. In the image coding based on overlapped transform, the application 

of MDLTPC is better than MMDSQ, RD-MDC, PCT, and GPCT. 
In [20], two methods of MDC are proposed. One is multiple description coding with randomly 

offset quantizers (MDROQ), the other is multiple description coding with uniformly offset 

quantizers (MDUOQ), where the closed-form expression of theoretical performances is obtained 
for any value of M.  

 In the MDC schemes mentioned above, the characteristics of the human visual system (HVS) 

are not fullly considered. The human eye is the final receiver of the image, so it is necessary to 
optimize encoding algorithm using human visual characteristics. Using human visual 

characteristics to optimize the image coding algorithm can make the coding more in line with 

human subjective experience. So this paper adopts a DCT-based JND model in the MDC 

framework, and it can accurately match with HVS. JND refers to the various visual masking 
effects of HVS, which means that the human eye can only perceive the signal changes beyond the 

JND thresholds. 

In this paper, the JND model is applied to the MDC schemes to remove more visual 
redundancy and improve the coding efficiency. JND model is a kind of model based on 

psychology and physiology, which can effectively represent the human visual redundancy in the 
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image. At present, several JND models have been proposed, which can be divided into two 

categories: JND model based on pixel domain in [21] and JND model based on transform domain 
in [22]. And they are applied at the encoder and decoder, respectively. At the encoder, the DCT 

coefficients of an original image are obtained firstly, and then the DCT coefficients are compared 

with the DCT-based JND thresholds. At the decoder, the pixel domain JND thresholds, obtained 

by the DCT-based JND ones, are then used to process the errors between the original image and 
the compressed image. 

The remainder of this paper is arranged as follows. In Section 2, we describe the scheme 

proposed in this paper and its advantages. In Section 3, the proposed method is compared with 
others, and results are given. 

2. JND-BASED MULTIPLE DESCRIPTION IMAGE CODING 

In this section, we first introduce the framework of the proposed JND-based MDC scheme, then 

specific steps of the two JND-based MDC methods are described. At last, theoretical analysis and 

expression of the expected distortion are given.  

2.1 Overview  

In the proposed MDC method, to get M descriptions, the sources are divided into M subsets. 
We can partition the sources at block level or sample level. For example, we can divide the 

sources into two subsets at block level, as shown in Fig. 1. Each descripton includes two subsets. 

In description 0, S0 is encoded with small stepsize 0q , S1 is predicted from the already encoded 

subset S0, and the prediction residuals of S1 are quantized by a large stepsize 1q . 

Correspondingly, in description 1, S1 is encoded with small stepsize 0q , while S0 is predicted 

from the already encoded subset S1, and the prediction residuals are quantized by a large stepsize 

1q . 

                                                                                                                                                                                                                                                                                                                               

                                                                                                    0   0    0    0        

                                                                                            0    0    0    0        

      0     1   0   1   0   1   0   1               S0                  0    0    0    0        

     1   0   1   0   1   0   1   0                                      0    0    0    0        

     0     1   0   1   0   1   0   1                                                                   

     1   0   1   0   1   0   1   0                                                                        

     0     1   0   1   0   1   0   1                                                                 

      1   0   1   0   1   0   1   0                                                 1    1    1    1        

            0     1   0   1   0   1   0   1              S1                        1    1    1    1         

             1   0   1   0   1   0   1   0                                       1    1    1    1        

                                                                                                   1    1    1    1        
Fig. 1. Two subsets resulted from the sources 

 

Time-domain lapped transform (TDLT) proposed in [23] is applied to the proposed MDC 

scheme. At the TDLT scheme, a M×M prefilter P and T are applied to the two block boundaries, 

where M represents the block size. Besides, M-point DCT and IDCT are applied to each block. 

Matrix P and T have the following structures to generate a near optimal linear phase overlap 

transformation [23]: 
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where I  is an / 2 / 2M M  identity matrix, V  is an / 2 / 2M M  invertible matrix, and J  is 

an / 2 / 2M M  counter-identity matrix.  

In the proposed MDC scheme, DCT-based JND model is applied. The JND value based on 
DCT is usually expressed as a base threshold multiplied by a number of factors [24]. And, the 

corresponding JND model expression is: 
 

                       ( , , , ) ( , , , ) ( , , , ) ( , , , )Basic lum contrastJND r c i j JND r c i j JND r c i j JND r c i j             (4) 

 

where r  and c  are represented as the index of a block in an image, i  and j  as the index of the 

DCT coefficients ( , 1:8i j  ). Besides, ( , , , )BasicJND r c i j , ( , , , )lumJND r c i j and 

( , , , )contrastJND r c i j  represent spatial contrast sensitivity function(CSF), brightness adaptive 

weighting factor, and contrast masking weighting factor respectively. 

( , , , )BasicJND r c i j  is a spatial contrast sensitivity function(CSF), which represents the 

sensitivity of HVS to the visual signal, and it is affected by the spatial frequency of the visual 

signal. 

 

                                         
2
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where s  represents a collection effect, and its empirical value is 0.25, i  and j  are the 

normalization factor of DCT, ij  is the corresponding spatial frequency of the DCT sub-band 

coefficients at the ( , )i j  position, 2

,(1 ) cos ( )i jr r     represents the tilt efficiency of the human 

eye ( 0.6)r  , and ,i j  represents the direction angle of the corresponding DCT component. 

Besides, the three parameters a , b  and c  are set to 1.33, 0.1 and 0.18.    

( , , , )lumJND r c i j  is the brightness adaptive weighting factor. The luminance masking factor is 

used to measure the weight of the perceived error in a stable background, which only depends on 

the characteristics of the local image. The brightness adaptive weighting factor is expressed as 
follows. 

 

                                   

(60 ) /150 1 60

( , , , ) 1 60 170

( 170) / 425 1 170

     

                 

    

lum

I I

JND r c i j I

I I

   


  


  

                           (6) 

 

where I  represents the average brightness. 
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( , , , )contrastJND r c i j  is a contrast masking weighting factor that is usually associated with the 

perceived degree of a signal in the presence of another signal. In the calculation, the image is first 
Canny edge detection, image blocks are divided into three categories: smooth area, edge area and 

texture area, different regions have different weights. The weighted factor of smooth region and 

the edge region is 1  , and the texture region if the coefficient index satisfies the condition 
2 2( ) 16i j   , then 2.25  , otherwise 1.25   . Considering the masking effect between the 

adjacent sub-bands, the contrast masking weighting factor is obtained: 

 

   

2 2

0.36

, ( ) 16

( , , , ) ( , , , )
min(4,max(1,( ( , )) ))

( , , , )

                 

  
contrast

lum
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JND r c i j





  


 
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2.2 System Description 

In this paper, we mainly study the JND-based two description image coding. Fig. 2 is the block 

diagram of JND-based MDLTPC (Multiple Description Lapped Transform with Prediction 
Compensation) [14], while Fig. 3 is the block diagram of JND-based MDROQ. In this paper, 

( )x k ,  ( )s k  and ( )y k  on behalf of the input of prefilter, the input of DCT and the output of DCT, 

respectively, and ˆ( )x k  denote reconstrction of the kth block. 

2.2.1 System Description of JND-based MDLTPC 
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Fig. 2. The block diagram of JND-based MDLTPC 

 

Fig. 2 illustrates the encoding and decoding process of one description of the proposed 
JND-based MDLTPC. Another description can be obtained in the same way. 

At the encoder, for the base layer, after the prefilter P and M-point DCT transform, the JND 

model is introduced to make the DCT coefficients be sparse, firstly. The DCT coefficients are 

compared with the DCT-based JND thresholds (4). The data that is less than the JND thresholds 
can be neglected, while others are retained, this will improve the coding efficiency under the 

premise of ensuring the visual quality. Then, quantization and entropy coding are applied 
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successively. For the enhancement layer, the prefiltered blocks { ( )}s k  plus minus the estimated 

data from the encoded base layer blocks firstly. Then, the prediction residuals are DCT transform, 
quantization and entropy coding. 

At the decoder, if two descriptions are received, only the base layer blocks of the two 

descriptions are used, where entropy decoding, the inverse quantization, the inverse DCT and the 
postfilter T are applied successively. If only one description is received, entropy decoding, the 

inverse quantization and the inverse DCT are applied to the base and enhancement layer blocks of 

the received description successively, firstly. Then enhancement blocks are estimated from the 

received base layer blocks by Wiener filter before postfiltering. At last, the postfilter T is used for 
reconstrction. 

2.2.2 System Description of JND-based MDROQ 
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Fig. 3. The block diagram of JND-based MDROQ. 

 

Fig. 3 illustrates the encoding and decoding process of one description of the proposed 
JND-based MDROQ. Another description can be obtained in the same way. 

At the encoder, the JND model is used to make the DCT coefficients be sparse after the prefilter 

P and M-point DCT transform. The DCT coefficients are compared with the DCT-based JND 
thresholds. The data that is less than the JND thresholds can be neglected while others are retained, 

which will improve the coding efficiency under the premise of ensuring the visual quality. For the 

base layer blocks, quantization and entropy coding are applied successively after DCT transform. 

For the enhancement layer blocks, { ( )}y n  the out of DCT transform blocks plus minus the 

estimated data from the encoded base layer blocks firstly. Then the prediction residuals are 

quantization and entropy coding. 

At the decoder, if only one description is received, entropy decoding and the inverse 
quantization are applied to the base and enhancement layer blocks of the received description 

successively, firstly. Then enhancement blocks are estimated from the received base layer blocks 

before the inverse DCT. At last, the inverse DCT and the postfilter T are used for reconstrction. If 
two descriptions are received, we first get the reconstructed values of each description using the 

method of receiving a description. Then, finding out the intersection of all received quantization 

bins is the key to reconstruct each subset.  

Fig. 4 is a two-description coding example of reconstructing each subset. x  is the original data 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8,  August 2017                                              3941 

of subset S0, ˆ
ix  is the reconstruction of x  in description 0, 

1x  is the prediction of x  in 

description 1, 
1̂e  is the reconstrction of the prediction residual 

1e . When both descriptions are 

received, a refined reconstrcution 
0 1,

ˆ
q qx  of x  can be got. We can reconstruct subset S1 in the 

same way. 

 
Fig. 4. a two-description coding example reconstructing each subset 

 

2.3 Theoretical Analysis and Expected Distortion Expression 

According to the theory of compressive sensing, the sparsity of the signal is of decisive 

significance to the reconstruction of the signal. With the increase of signal sparsity, the decoding 

complexity of the signal will be reduced, and the reconstruction effect will be improved [25] [26]. 
In this paper, the block DCT transform is used as a sparse basis. 

 
Table 1. The number of zero DCT cofficients 

 

Test images 

The number of zero DCT coefficients 

Berfore JND processing After JND processing 

MDLTPC MDROQ JND_MDLTPC JND_MDROQ 

Lena 0 0 100816 201370 

Boat 0 0 98765 197460 

Peppers 0 0 97702 195442 

Couple 0 0 90509 180910 

Goldhill 0 0 88936 177625 

Baboon 0 0 68631 137110 

 

No matter Fig. 2 or Fig. 3, the JND model is introduced to further make the DCT coefficients 

be sparse. The JND model is used to filter the DCT coefficients of the six test images, and the 
DCT coefficients below the JND threshold are set to zero. As shown in Table 1, it can be seen that 

a lot of DCT coefficients become zero after the JND processing, the signal becomes sparser. This 

also shows that the sparsity of the DCT coefficients is increased without affecting the subjective 
quality.  

In the proposed MDC scheme, each description consists of half of the base layer samples and 

half of the enhancement layer samples. Assuming that 0R   and 1R   respectively represent the 

average bit rate of the base layer and the enhancement layer, then the total rate R  [bits/pixel 

(bpp)] is 0 1R R R  . If the total bit rate R  and the missing probability p  are fixed, we can 

adjust 0R
 
and 1R  to minimize the expected distortion, that is, maximum the Expected PSPNR. 

Let 0D  and 1D  denote central distortion and side distortion when two descriptions and one 

description are received, respectively. Then the expected distortion can be writen as: 
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3. EXPERIMENTAL RESULTS FOR JND-BASED MD IMAGE CODING 

3.1 Evaluation Criterion 

In this section, we evaluate the performance of the proposed scheme in this paper. In order to 

compare with other methods fairly, this paper sets up the same experimental parameters for MDC. 

It should be noted that the peak signal-to- perceptual ration (PSPNR) in [21] is used as the 
criterion for evaluating the quality of image reconstruction. The PSPNR in this paper can be 

calculated as: 
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              (10) 

 

where ( , )I x y  and ˆ( , )I x y  respectively represent the original value and the reconstructed value 

of the pixel located at ( , )x y . W  and H  denote the width and height of the image.  

_ ( , , , )Pixel JND r c x y  represents JND values of pixel domain. 

Both the pixel domain JND and the frequency domain JND are derived from the same human 

vision mechanism, so they can be transformed into each other [27] [28]. Fig. 5 is a block diagram 

from JND values of DCT domain to JND values of pixel domain. 
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Fig. 5. JND values of DCT domain to JND values of pixel domain. 
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3.2 Results 

The performance comparisons of the proposed JND-based MDC method with MDLTPC and 
MDROQ are implemented in one description-loss environment and two descriptions receive 

environment. Six 512 512 standard test images with different characteristics are selected in this 

paper, and the block size M  is chosen to be 8. On the premise of a given bit rate R , Side PSPNR 
and Central PSPNR can be decided by the codec at the same time, where Side PSPNR and Central 

PSPNR denote the measure quality when one description is lost and two descriptions are received, 

respectively. 
Our method is compared with MDLTPC and MDROQ for the image boat, goldhill, couple, 

peppers, lena and baboon, the results are showed in Fig. 6, where the total bit rate (R) is 0.5 bpp. 

Similar, Fig. 7 compare the proposed method with MDLTPC and MDROQ, where R  is 1 bpp. It 
can be seen that for the given same Central PSPNR, the Side PSPNR of JND MDLTPC and JND 

MDROQ outperform MDLTPC, PMDROQ in most case, respectively. 

Fig. 8 and Fig. 9 show the optimal expected PSPNR of proposed method with others at 0.5R   

bpp and 1R    bpp for two descriptions respectively, where loss probability 0.1p  . Fig. 10 and 

Fig. 11 at 0.5R   bpp and 1R    bpp for two descriptions respectively, where loss probability 

0.2p  . Clearly, our method achieves obvious improvement at a certain Central PSPNR. Besides, 

on the premise of a given p , we can adjust the stepsize to change the values of Side PSPNR and 

Central PSPNR, and then get the maximum value of Excepted PSPNR. For example, when 

0.5R   bpp and 0.1p  , setting the value of Central PSPNR to 36.15 dB, and Excepted PSPNR 

will be close to the optimal value for lena. 
From Fig. 6-Fig. 11, it can be clearly seen that after joining the JND, our method works better 

in the same number of observations, and we further validate the view that  JND is claimed to 

match with human visual system accurately. Our method not only solves the problem of packet 
loss but also improves the coding efficiency. 
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Fig. 6. Side decoder results with total rate 0.5 bpp. 
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Fig. 7. Side decoder results with total rate 1 bpp. 
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Fig. 8. The expected PSPNR with total rate 0.5 bpp.(p=0.10) 
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Fig. 9. The expected PSPNR with total rate 1 bpp.(p=0.10) 
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Fig. 10. The expected PSPNR with total rate 0.5 bpp.(p=0.20) 
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Fig. 11. The expected PSPNR with total rate 1 bpp. (p=0.20) 
 

 

    
(a) MDLTPC (b) MDROQ (e) MDLTPC (f) MDROQ 

(31.364dB) (31.416 dB) (24.681 dB) (24.757 dB) 

    
(c) JND_MDLTPC (d) JND_MDROQ (g) JND_MDLTPC (h) JND_MDROQ 

(31.798 dB) (31.941 dB) (24.802 dB) (25.053 dB) 

Fig. 12. Side decoder results with total rate 0.5 bpp and Central PSPNR 36.306dB in (a)-(d), 1 bpp and 

27.820 dB in (e)-(h). The Side PSPNR is included in the parentheses. 

 

Fig. 12 shows some decoding results under the condition of one description received. The four 

methods are compared at the same Central PSPNR and total bit rate. Clearly, compared to 

previous MDC methods, JND based MDC methods achieve significant improvement in Side 
PSPNR. The Central PSPNR is fixed at about 36.606 dB, with R=0.5 bpp for lena. The 
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JND_MDLTPC and JND_MDROQ are 0.434 dB and 0.558 dB better than MDLTPC and 

MDROQ respectively. Similarly, the Central PSPNR is fixed at about 37.820 dB, with R=1 bpp 
for baboon. The JND_MDLTPC and JND_MDROQ are 0.121 dB and 0.296 dB better than 

MDLTPC and MDROQ respectively. 

5. Conclusion 

This paper proposed a novel multiple description image coding scheme, called JND-based 

multiple description image coding. The new scheme is based on the characteristics of the human 
visual model. The human eye can only perceive the change of the specific thresholds, which are 

named just noticeable difference (JND) thresholds. Due to the inherent characteristics of human 

vision, only the data that is greater than the corresponding JND threshold value is retained at the 

encoder. This paper calculates the DCT coefficients firstly, and then those coefficients are 
compared with the JND thresholds. The data that is less than the JND thresholds can be neglected, 

which can improve the coding efficiency. The image coding results of the proposed method 

outperforms other existing methods. 
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