DOI QR코드

DOI QR Code

STD 11 강의 오스테나이트화 온도에 따른 제 특성의 정량 분석

Quantitative Analysis of Metallographic Characteristics with Austenitizing Temperature in STD 11 Steel

  • 김조은 (조선대학교 대학원 첨단소재공학과) ;
  • 주용후 (조선대학교 대학원 첨단소재공학과) ;
  • 장우양 (조선대학교 재료공학과)
  • Kim, J.E. (Dept. of Advanced Materials, Graduate School, Chosun University) ;
  • Ju, Y.H. (Dept. of Advanced Materials, Graduate School, Chosun University) ;
  • Jang, W.Y. (Dept. of Metallurgy & Materials Engineering, Chosun University)
  • 투고 : 2017.08.25
  • 심사 : 2017.09.06
  • 발행 : 2017.09.30

초록

The effect of austenitizing temperature on the degree of carbides re-solutionizing, mean graine size, hardness and the volume fraction of retaind austenite ($V_{\gamma}$) etc., has been studied by means of metallography, X-ray diffractometry and hardness measurement in STD 11 tool steel. As austenitizing temperature increases, the amount of alloying elements which is re-dissolved into matrix increases, resulting in increase of $V_{\gamma}$, due to the chemical stabilization of austenite. The Vickers hardness value decreases with increasing austenitizing temperature, which is attributed to grain size as well the volume fractions of $V_{\gamma}$ and carbides. Theoretical diffraction intensity of (200) ${\alpha}^{\prime}$, (211) ${\alpha}^{\prime}$ (200) ${\gamma}$ and (220) ${\gamma}$ peaks obtained by $CuK_{\alpha}$ chracteristics X-ray (${\lambda}=0.15429nm$) was calculated, and quantitative analysis of $V_{\gamma}$ could be carried out by X-ray diffraction method. The resultant value is well coincided with the value obtained by image analysis method. When the quenched specimen is tempered above $200{\sim}400^{\circ}C$ for 30 min, the transition carbides i.e., MC and $M_2C$ in the size of about 20 nm begin to precipitate at $300^{\circ}C$.

키워드

참고문헌

  1. W. D. Forgeng and W. D. Forgeng Jr. : ASM H/B Vol. 8(8th ed.), ASM Int'l, Ohio, (1980) 402-404.
  2. Charlie R. Brooks, Principle of the Austenitization of Steels, Elsevier Applied Science, London (1992) 101-129.
  3. D. Das and K. K. Ray : Mater. Sci. & Engr.(A), 541 (2012) 45-60. https://doi.org/10.1016/j.msea.2012.01.130
  4. V. G. Gavriljuk, V. A. Sirosh, Y. N. Petrov, A. I. Tyshchenko, W. Theisen, and A. Kortmann : Metall. Trans.(A), 45 (2014) 2453-2465.
  5. S. Kahrobaee and M. Kashefi : J. of Mater. Engr. and Perform., 24(3) (2015) 1192-1198. https://doi.org/10.1007/s11665-014-1337-5
  6. H. J. Kim : Master Thesis, pp. 34-41, Chosun University, Gwangju (2013).
  7. ASTM E975-03 (Reapproved 2008)
  8. B. D. Cullity and S. R. Stock : Elememts of X-ray Diffraction (3rd edition), Prentice Hall (2001) 158.
  9. Z. Nishiyama : Martensitic Transformation, Academic Press, Inc., London (1978) 304-328.
  10. S. Salunkhe, D. Fabijanic, J. Nayak and P. Hodgson : Mater. Today: Proc., 2(4-5) (2015) 1901-1906. https://doi.org/10.1016/j.matpr.2015.07.145
  11. K. Moore, and D. N. Collins : Key Engr. Mater., 86-87 (1993) 47-54. https://doi.org/10.4028/www.scientific.net/KEM.86-87.47
  12. H. G. Nanesa, M. Jahazi and R. Naraghi : J. of Mater. Sci., 50(17) (2015) 5758-5768. https://doi.org/10.1007/s10853-015-9123-9
  13. W. C. Leslie : The Physical Metallurgy of Steels, Hemisphere Publishing Corp., New York (1981) 226.
  14. D. Das, A. K. Dutta and K. K. Ray : Mater. Sci. & Engr. (A), 527(9) (2010) 2182-2193. https://doi.org/10.1016/j.msea.2009.10.070