DOI QR코드

DOI QR Code

Sample Preparation and Nucleic Acid-based Technologies for the Detection of Foodborne Pathogens

식중독균의 검출을 위한 시료전처리 및 핵산기반의 분석기술

  • Lim, Min-Cheol (Korea Food Research Institute) ;
  • Kim, Young-Rok (Department of Food Science and Biotechnology & Graduate School of Biotechnology, Kyung Hee University)
  • 임민철 (한국식품연구원) ;
  • 김영록 (경희대학교 생명과학대학 식품생명공학과)
  • Received : 2017.05.31
  • Accepted : 2017.07.10
  • Published : 2017.08.31

Abstract

There have been great efforts to develop a rapid and sensitive detection method to monitor the presence of pathogenic bacteria in food. While a number of methods have been reported for bacterial detection with a detection limit to a single digit, most of them are suitable only for the bacteria in pure culture or buffered solution. On the other hand, foods are composed of highly complicated matrices containing carbohydrate, fat, protein, fibers, and many other components whose composition varies from one food to the other. Furthermore, many components in food interfere with the downstream detection process, which significantly affect the sensitivity and selectivity of the detection. Therefore, isolating and concentrating the target pathogenic bacteria from food matrices are of importance to enhance the detection power of the system. The present review provides an introduction to the representative sample preparation strategies to isolate target pathogenic bacteria from food sample. We further describe the nucleic acid-based detection methods, such as PCR, real-time PCR, NASBA, RCA, LCR, and LAMP. Nucleic acid-based methods are by far the most sensitive and effective for the detection of a low number of target pathogens whose performance is greatly improved by combining with the sample preparation methods.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Barany F. 1991. The ligase chain reaction in a PCR world. Genome Res. 1: 5-16. https://doi.org/10.1101/gr.1.1.5
  2. Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R, Milanovich F. 1999. PCR detection of bacteria in seven minutes. Science 284: 449-450. https://doi.org/10.1126/science.284.5413.449
  3. Berensmeier S. 2006. Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73: 495-504. https://doi.org/10.1007/s00253-006-0675-0
  4. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, Van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28: 495-503.
  5. Cady NC, Stelick S, Batt CA. 2003. Nucleic acid purification using microfabricated silicon structures. Biosens. Bioelectron. 19: 59-66. https://doi.org/10.1016/S0956-5663(03)00123-4
  6. Catsimpoolas N. 2012. Methods of cell separation. Springer Science & Business Media, Berlin, Germany.
  7. Clancy E, Coughlan H, Higgins O, Boo TW, Cormican M, Barrett L, Smith TJ, Reddington K, Barry T. 2016. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis. J. Microbiol. Methods 127: 197-202. https://doi.org/10.1016/j.mimet.2016.06.017
  8. Coakley WT. 1997. Ultrasonic separations in analytical biotechnology. Trends Biotechnol. 15: 506-511. https://doi.org/10.1016/S0167-7799(97)01122-0
  9. Cudjoe KS, Hagtvedt T, Dainty R. 1995. Immunomagnetic separation of Salmonella from foods and their detection using immunomagnetic particle (IMP)-ELISA. Int. J. Food Microbiol. 27: 11-25. https://doi.org/10.1016/0168-1605(94)00134-R
  10. d'Amico L, Ajami NJ, Adachi JA, Gascoyne P, Petrosino JF. 2017. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip. 17: 1340-1348. https://doi.org/10.1039/C6LC01277A
  11. Darby GK, Jones AS, Kennedy JF, Walker RT. 1970. Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii. J. Bacteriol. 103: 159-165.
  12. Dean FB, Nelson JR, Giesler TL, Lasken RS. 2001. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11: 1095-1099. https://doi.org/10.1101/gr.180501
  13. de Angelis MM, Wang DG, Hawkins TL. 1995. Solid-phase reversible immobilization for the isolation of PCR products. Nucl. Acids Res. 23: 4742. https://doi.org/10.1093/nar/23.22.4742
  14. Dwivedi HP, Jaykus LA. 2011. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37: 40-63. https://doi.org/10.3109/1040841X.2010.506430
  15. Foglietta E, Deidda G, Graziani B, Modiano G, Bianco I. 1996. Detection of alpha-globin gene disorders by a simple PCR methodology. Haematol. 81: 387-396.
  16. Gascoyne PRC, Huang Y, Pethig R, Vykoukal J, Becker FF. 1992. Dielectrophoretic separation of mammalian cells studied by computerized image analysis. Meas. Sci. Technol. 3: 439. https://doi.org/10.1088/0957-0233/3/5/001
  17. Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW. 1995. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrocheminescence sensor. Biosens. Bioelectron. 10: 501-507. https://doi.org/10.1016/0956-5663(95)96925-O
  18. Gibriel AA, Adel O. 2017. Advances in ligase chain reaction and ligation based amplifications for genotyping assays; detection and applications. Mutat. Res. Rev. Mutat. Res. 773: 66-90. https://doi.org/10.1016/j.mrrev.2017.05.001
  19. Gill P, Ghaemi A. 2008. Nucleic acid isothermal amplification technologies-A review. Nucleos. Nucleot. Nucl. 27: 224-243. https://doi.org/10.1080/15257770701845204
  20. Glantz POJ, Arnebrant T, Nylander T, Baier RE. 1999. Bioadhesion-a phenomenon with multiple dimensions. Acta Odontol. Scand. 57: 238-241. https://doi.org/10.1080/000163599428634
  21. Guo Z, Liu Y, Li S, Yang Z. 2009. Interaction of bacteria and ion-exchange particles and its potential in separation for matrixassisted laser desorption/ionization mass spectrometric identification of bacteria in water. Rapid Commun. Mass Spectrom. 23: 3983-3993. https://doi.org/10.1002/rcm.4338
  22. Ha SD. 2007. Trends in detection and isolation methods of foodborne microorganisms. Food Ind. 198: 9-19.
  23. Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res. 6: 986-994. https://doi.org/10.1101/gr.6.10.986
  24. Hoopes BC, McClure WR. 1981. Studies on the selectivity of DNA precipitation by spermine. Nucl. Acids Res. 9: 5493-5504. https://doi.org/10.1093/nar/9.20.5493
  25. Hopkins DW, Macnaughton SJ, O'Donnell AG. 1991. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol. Biochem. 23: 217-225. https://doi.org/10.1016/0038-0717(91)90055-O
  26. Hyeon JY, Deng X. 2017. Rapid detection of Salmonella in raw chicken breast using real-time PCR combined with immunomagnetic separation and whole genome amplification. Food Microbiol. 63, 111-116. https://doi.org/10.1016/j.fm.2016.11.007
  27. Jiang Y, Zou S, Cao X. 2017. A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification. Sens. Actuators B Chem. 251: 976-984. https://doi.org/10.1016/j.snb.2017.05.146
  28. Jo SH, Kim CI, Ha SD. 2009. Outbreak pattern forecasting of food-borne disease in group food services in Korea. J. Food Hyg. Saf. 24: 19-26.
  29. Kado CI, Liu ST. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373.
  30. Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P. 1991. NASBATM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J. Virol. Methods. 35: 273-286.
  31. Kim HJ, Kim YS, Chung MS, Oh DH, Chun HS, Ha SD. 2010. Trends in rapid detection methods for food-borne pathogenic microorganisms by using new technologies. J. Food Hyg. Saf. 25: 376-387.
  32. Kim YS, Ha SD. 2006. Detection and isolation of foodborne bacteria using conventional culture media. Safe Food 1: 5-15.
  33. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30: 545-551.
  34. Lee M, Huh N, Kim JH. 2008. Isolation of total RNA from Escherichia coli using kosmotropic Hofmeister salts. Anal. Biochem. 381: 160-162. https://doi.org/10.1016/j.ab.2008.06.015
  35. Leff LG, Dana JR, McArthur JV, Shimkets LJ. 1995. Comparison of methods of DNA extraction from stream sediments. Appl. Environ. Microbiol. 61: 1141-1143.
  36. Leone G, van Gemen B, Schoen CD, van Schijndel H, Kramer FR. 1998. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucl. Acids Res. 26: 2150-2155. https://doi.org/10.1093/nar/26.9.2150
  37. Liebana S, Brandao D, Cortes P, Campoy S, Alegret S, Pividori MI. 2016. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles. Anal. Chim. Acta 904: 1-9. https://doi.org/10.1016/j.aca.2015.09.044
  38. Lim MC, Lee GH, Huynh DTN, Hong CE, Park SY, Jung JY, Park CS, Ko S, Kim YR. 2016. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Colloid Surface B. 145: 854-861. https://doi.org/10.1016/j.colsurfb.2016.05.077
  39. Lim MC, Park JY, Park K, Ok G, Jang HJ, Choi SW. 2017. An automated system for separation and concentration of foodborne pathogens using immunomagnetic separation. Food Control 73: 1541-1547. https://doi.org/10.1016/j.foodcont.2016.11.021
  40. Lindahl V, Bakken LR. 1995. Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol. Ecol. 16: 135-142. https://doi.org/10.1111/j.1574-6941.1995.tb00277.x
  41. Lindqvist R, Norling B, Lambertz ST. 1997. A rapid sample preparation method for PCR detection of food pathogens based on buoyant density centrifugation. Lett. Appl. Microbiol. 24: 306-310. https://doi.org/10.1046/j.1472-765X.1997.00069.x
  42. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19: 225-232. https://doi.org/10.1038/898
  43. Lucore LA, Cullison MA, Jaykus LA. 2000. Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. Appl. Environ. Microbiol. 66: 1769-1776. https://doi.org/10.1128/AEM.66.5.1769-1776.2000
  44. Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP, Xiong Y. 2016. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 59: 601-608. https://doi.org/10.1016/j.foodcont.2015.06.048
  45. Markx GH, Dyda PA, Pethig R. 1996. Dielectrophoretic separation of bacteria using a conductivity gradient. J. Biotechnol. 51: 175-180. https://doi.org/10.1016/0168-1656(96)01617-3
  46. McCormick RM. 1989. A solid-phase extraction procedure for DNA purification. Anal. Biochem. 181: 66-74. https://doi.org/10.1016/0003-2697(89)90394-1
  47. Meyer R, Lüthy J, Candrian U. 1991. Direct detection by polymerase chain reaction (PCR) of Escherichia coli in water and soft cheese and identification of enterotoxigenic strains. Lett. Appl. Microbiol. 13: 268-271. https://doi.org/10.1111/j.1472-765X.1991.tb00625.x
  48. Meylheuc T, Giovannacci I, Briandet R, Bellon-Fontaine MN. 2002. Comparison of the cell surface properties and growth characteristics of Listeria monocytogenes and Listeria innocua. J. Food Prot. 65: 786-793. https://doi.org/10.4315/0362-028X-65.5.786
  49. Min J, Kim JH, Lee Y, Namkoong K, Im HC, Kim HN, Kim HY, Huh N, Kim YR. 2011. Functional integration of DNA purification and concentration into a real time micro-PCR chip. Lab Chip. 11: 259-265. https://doi.org/10.1039/C0LC00320D
  50. Niemz A, Ferguson TM, Boyle DS. 2011. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29: 240-250. https://doi.org/10.1016/j.tibtech.2011.01.007
  51. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucl. Acids Res. 28: e63. https://doi.org/10.1093/nar/28.12.e63
  52. Oh SJ, Park BH, Jung JH, Choi G, Lee DC, Seo TS. 2016. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron. 75: 293-300. https://doi.org/10.1016/j.bios.2015.08.052
  53. Payne MJ, Kroll RG. 1991. Methods for the separation and concentration of bacteria from foods. Trends Food Sci. Technol. 2: 315-319. https://doi.org/10.1016/0924-2244(91)90734-Z
  54. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29: e45. https://doi.org/10.1093/nar/29.9.e45
  55. Reedy CR, Price CW, Sniegowski J, Ferrance JP, Begley M, Landers JP. 2011. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly (methyl methacrylate)(PMMA) microdevice. Lab Chip. 11: 1603-1611. https://doi.org/10.1039/c0lc00597e
  56. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487. https://doi.org/10.1126/science.239.4839.487
  57. Skjerve E, Rorvik LM, Olsvik O. 1990. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ. Microbiol. 56: 3478-3481.
  58. Sohni Y, Kanjilal S, Kapur V. 2008. Performance evaluation of five commercial real-time PCR reagent systems using TaqMan assays for B. anthracis detection. Clin. Biochem. 41: 640-644. https://doi.org/10.1016/j.clinbiochem.2008.01.007
  59. Stevens KA, Jaykus LA. 2004. Bacterial separation and concentration from complex sample matrices: a review. Crit. Rev. Microbiol. 30: 7-24. https://doi.org/10.1080/10408410490266410
  60. Tomita N, Mori Y, Kanda H, Notomi T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3: 877-882. https://doi.org/10.1038/nprot.2008.57
  61. Uyttendaele M, Van Boxstael S, Debevere J. 1999. PCR assay for detection of the E. coli O157: H7 eae-gene and effect of the sample preparation method on PCR detection of heat-killed E. coli O157: H7 in ground beef. Int. J. Food Microbiol. 52: 85-95. https://doi.org/10.1016/S0168-1605(99)00132-4
  62. Vuong J, Collard JM, Whaley MJ, Bassira I, Seidou I, Diarra S, Oueedraogo RT, Kambire D, Taylor Jr TH, Sacchi C. 2016. Development of real-time PCR methods for the detection of bacterial meningitis pathogens without DNA extraction. PLoS One. 11: e0147765. https://doi.org/10.1371/journal.pone.0147765
  63. Waller DF, Hew BE, Holdaway C, Jen M, Peckham GD, 2016. Rapid detection of Bacillus anthracis spores using immunomagnetic separation and amperometry. Biosensors 6: 61. https://doi.org/10.3390/bios6040061
  64. Wegmuller B, Luthy J, Candrian U. 1993. Direct polymerase chain reaction detection of Campylobacter jejuni and Campylobacter coli in raw milk and dairy products. Appl. Environ. Microbiol. 59: 2161-2165.
  65. Wiedmann M, Wilson WJ, Czajka J, Luo J, Barany F, Batt, CA. 1994. Ligase chain reaction (LCR)-overview and applications. Genome Res. 3: S51-64. https://doi.org/10.1101/gr.3.4.S51
  66. Xu Y, Vaidya B, Patel AB, Ford SM, McCarley RL, Soper SA. 2003. Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal. Chem. 75: 2975-2984. https://doi.org/10.1021/ac030031n

Cited by

  1. Anti-bacterial Effect of Oenothera lamarckiana Aerial Part Extract vol.26, pp.4, 2017, https://doi.org/10.15616/bsl.2020.26.4.383